Single Nucleotide Polymorphism of CDC37, AHSA1 and STIP1 Gene in Three Cattle Breeds using SNaPshot Technology

DOI: 10.18805/IJAR.B-1266    | Article Id: B-1266 | Page : 378-383
Citation :- Single Nucleotide Polymorphism of CDC37, AHSA1 and STIP1 Gene in Three Cattle Breeds using SNaPshot Technology.Indian Journal Of Animal Research.2021.(55):378-383
Xiao Wang, Guang-Xin E, Ri-Su Na, Cheng-Li Liu, Ze-Hui Guo, Shu-Zhu Cheng, Bai-Gao Yang, Yong-Fu Huang
Address : College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
Submitted Date : 20-03-2020
Accepted Date : 5-07-2020


Background: Heat stress in domestic animals has become a major limit factor for livestock production in tropical and subtropical regions. These traits that adapt to torrid environment are important in livestock breeding.
Methods: In this study, we identified and genotyped six Single nucleotide polymorphism for the CDC37, AHSA1 and STIP1 gene in the Droughtmaster, Angus and Simmental cattle breeds using the SNaPshot Multiplex system. 
Result: Result of pair-wise differences (FST) revealed three SNP locus (CDC37-6 (A16154247/G), CDC37-7 (C16157867/G), AHSA1-10 (G89722567/A) were significantly different in the Droughtmaster population than Angus and Simmental cattle breeds. Moreover, it was found that CDC37-7 (C16157867/G) locus deviated from Hardy-Weinberg equilibrium, suggesting that the CDC37-7 (C16157867/G) genes have been influenced by the selective breeding of the Droughtmaster breed. Therefore, CDC37-7 (C16157867/G) locus could be used as a marker-assisted candidate gene locus of heat tolerance. This study provides valuable information, concerning marker-assisted selection in the breeding of heat stress resistant cattle. 


Cattle Heat tolerance traits SNaPshot


  1. Alemu, T.W., Pandey, H.O., Wondim, D.S., Gebremedhn, S., Neuhof, C., Tholen, E., Holker, M., Schellander, K., Tesfaye, D. (2018). Oxidative and endoplasmic reticulum stress defense mechanisms ofbovine granulosa cells exposed to heat stress. Theriogenology. 110(1): 130-141.
  2. Andrade, L.S., Santos, D.B., Castro, D.B., Guillo, L.A., Chen-Chen, L. (2008). Absence of antimutagenicity of Cochlospermum regium (Mart. and Schr.) Pilger 1924 by micronucleus test in mice. Brazilian Journal of Biology. 68(1): 155-159.
  3. Aréchiga, C.F., Staples, C.R., McDowell, L.R., Hansen, P.J. (1998). Effects of Timed Insemination and Supplemental β-Carotene on Reproduction and Milk Yield of Dairy Cows under Heat Stress. Journal of Dairy Science. 81(2): 0-402. 
  4. Bharati, J., Dangi, S.S., Bag, S., Maurya, V.P., Singh, G., Kumar, P., Sarkar, M. (2017). Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle. International Journal of Biometeorology. 61(8): 1461-1469.
  5. Brijesh, Patel., Nishant, Kumar., Varsha, Jain., Nitin, Raheja., Satendra, Kumar. Yadav., Narender, Kumar., S.S. Lathwal., S.V. Singh (2018). Effect of zinc supplementation on hormonal and lipid peroxidation status of peri-parturient Karan Fries cows during heat stress condition. Indian Journal of Animal Research. 52(4): 513-517.
  6. Cai, M. (2014). Effects of Heat Stress on Physiological and Biochemical Indexes and Expression Levels of MicroRNA in Peripheral Blood. Southwest University, Chongqing, China.
  7. Calderwood, S.K. (2015). Cdc37 as a co-chaperone to Hsp90. Subcell Biochem. 78: 103-112. 
  8. Chanda, T., Debnath, G.K., Khan, K.I., Rahman, M.M., Chanda, G.C. (2018). Impact of heat stress on milk yield and composition in early lactation of Holstein Friesian crossbred cattle. Bangladesh Journal of Animal Science. 46(3): 192. DOI: 10.3329/bjas.v46i3.3631.
  9. Chao, A., Lai, C.H., Tsai, C.L., Hsueh, S., Hsueh, C., Lin, C.Y., Chou, H.H., Lin, Y.J., Chen, H.W., Chang, T.C., Wang, T.H. (2013). Tumor stress-induced phosphoprotein1 (STIP1) as a prognostic biomarker in ovarian cancer. PLoS One. 8(2): e57084. DOI:10.1371/journal.pone.0057084.
  10. Chen, Z., Xu, L., Su, T., Ke, Z., Peng, Z., Zhang, N., Peng, S., Zhang, Q., Liu, G., Wei, G., Guo, Y., He, M., Kuang, M. (2017). Autocrine STIP1 signaling promotes tumor growth and is associated with disease outcome in hepatocellular carcinoma. Biochemical and Biophysical Research Communications. 493(1): 365.
  11. Dikmen, S. and Hansen, P.J. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science. 92(1): 109-116.
  12. Excoffier, L. and Lischer, H.E.L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 10(3): 564-567. 
  13. Fang,W., He, J., Huang, J., Ju, Z., Wang, C., Qi, C., Li, J., Li, R., Zhong, J., Li, Q. (2014). Study on genetic variations of PPARá gene and its effects on thermal tolerance in Chinese Holstein. Molecular Biology Reports. 41(3): 1273-1278.
  14. Guo, H., Yang, Y., Li, L. (2007). Research Progress on Heat Stress of Cow. Journal of Dairy Science and Technology. 30(2): 101-104.
  15. Hammond, A.C., Olson, T.A., Chase, C.C., Bowers, E.J., Randel, R.D., Murphy, C.N., Vogt, D.W., Tewolde, A. (1996). Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus and Hereford cattle in Florida. Journal of Animal Science. 74(2): 295.
  16. Hansen, P.J., Drost, M., Rivera, R.M., Paula-Lopes, F.F., al-Katanani, Y.M., Krininger, C.E., Chase, C.C. (2001). Adverse impact of heat stress on embryo production: causes and strategies for mitigation. Theriogenology. 55(1): 91-103. 
  17. Huber, J.T., Higginbotham, G., Gomez-Alarcon, R.A., Taylor, R.B., Chen, K.H., Chan, S.C., Wu, Z. (1994). Heat Stress Interactions with Protein Supplemental Fat and Fungal Cultures. Journal of Dairy Science. 77(7): 2080-2090. 
  18. Lalrengpuii, Sailo., I.D, Gupta., Archana, Verma., Ramendra, Das., M.V, Chaudhari., Sohanvir, Singh.(2016). Polymorphisms in Hsp90ab1 gene and their association with heattolerance in Sahiwal and Karan Fries cows. Indian Journal of Animal Research. 50(6): 856-861.
  19. Liang, C., Zhu, J., Ramelot, T.A., Kennedy, M.A., Yue, X., Li, X., Liu, M., He, T., Yang, Y. (2019). Solution NMR structure of CHU_1110 from Cytophaga hutchinsonii, an AHSA1 protein potentially involved in metal ion stress response. Proteins. 87(1): 91. 
  20. Liu, Z., Ezernieks, V., Wang, J., Arachchillage, N.W., Garner, J.B., Wales, W.J., Cocks, B.G., Rochfort, S. (2017). Heat Stress in Dairy Cattle Alters Lipid Composition of Milk. Scientific Reports. 7(1): 961. DOI: 10.1038/s41598-017-01120-9.
  21. Luo, X., Liu, Y., Ma, S., Liu, L., Xie, R., Li, M., Shen, P., Wang, S. (2018). STIP1 is over-expressed in hepatocellular carcinoma and promotes the growth and migration of cancer cells. Gene. 622(1) 110-117.
  22. Ota, A. and Wang, Y. (2011). Cdc37/Hsp90 protein-mediated regulation of IRE1α protein activity in endoplasmic reticulum stress response and insulin synthesis in INS-1 cells. Journal of Biological Chemistry. 287(9): 6266-6274. 
  23. Padden, J., Megger, D.A., Bracht, T., Reis, H., Ahrens, M., Kohl, M., Eisenacher, M., Schlaak, J.F., Canbay, A.E., Weber, F., Hoffmann, A.C., Kuhlmann, K., Meyer, H.E., Baba, H.A., Sitek, B. (2014). Identification of Novel Biomarker Candidates for the Immunohistochemical Diagnosis of Cholangiocellular Carcinoma. Molecular and Cellular Proteomics.13(10): 2661-2672. 
  24. Rahman, M.B., Schellanderb, K., Luceñoa, N.L., Soom, A.V. (2018). Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology. 113: 102-112. 
  25. Raymond, M. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity. 86: 248-249.
  26. Sanchez-Alavez, M., Tabarean, I.V., Osborn,O., Mitsukawa, K., Schaefer, J., Dubins, J., Holmberg, K.H., Klein, I., Klaus, J., Gomez, L.F., Kolb, H., Secrest, J., Jochems, J., Myashiro, K., Buckley, P., Hadcock, J.R., Eberwine, J., Conti, B., Bartfai, T. (2010). Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons. Diabetes. 59(1): 43-50. 
  27. Scholz, G., Hartson, S.D., Cartledge, K., Hall, N., Shao, J., Dunn, A.R., Matts, R.L. (2000). p50 (Cdc37) can buffer the temperature-sensitive properties of a mutant of Hck. Molecular and Cellular Biology. 20(18): 6984-6995. 
  28. Shao, J., Wang, L., Zhong, C., Qi, R., Li, Y. (2016). AHSA1 regulates proliferation, apoptosis, migration and invasion of osteosarcoma. Biomed Pharmacother. 77: 45-51.
  29. Shipley, K. and Roberts, C. (2003). Identification of Cdc37 as a novel regulator of the stress-responsive mitogen-activated protein kinase. Molecular and Cellular Biology. 23(15): 5132-5142. 
  30. Silanikove, N. and Koluman, N. (2015). Impact of climate change on the dairy industry in temperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Research. 123(1): 27-34. 
  31. Sun, W., Xing, B., Sun, Y., Du, X., Lu, M., Hao, C., Lu, Z., Mi, W., Wu, S., Wei, H., Gao, X., Zhu, Y., Jiang, Y., Qian, X., He, F. (2007). Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Molecular and Cellular Proteomics. 6(10): 1798-1808. 
  32. Wang, W., Fu, M., Tang, H., Gan, J., Feng, H., Fang, D., Wang, H., Yi, J. (2018). Study on the blood biochemical indexes of Shuxuan, Simmental and Holstein cattle under the condition of High humidity and Heat. Heilongjiang Animal Science and Veterinary Journal. 3: 104-107.254.
  33. West, J.W. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science. 86(6): 2131-2144. 
  34. West, J.W. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science. 86(6): 2131-2144. DOI: 10.3168/jds.S0022-0302 (03)73803-X.
  35. Zheng, Y., Chen, K., Zheng, X., Li, H., Wang, G. (2014). Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal Holstein cows. Cell Stress and Chaperones. 19(6): 973-981. 

Global Footprints