Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.40

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 12 (december 2020) : 1490-1496

Comparing the mRNA Expression Profile of Psoas Major and Longissimus Dorsi Muscles in Pig

Yuanyuan Zhao, Guoqing Cao, Pengfei Gao, Guifang Jia, Fei Yang, Jinzhu Meng
1Tongren University, Tongren-554 300, China.
Cite article:- Zhao Yuanyuan, Cao Guoqing, Gao Pengfei, Jia Guifang, Yang Fei, Meng Jinzhu (2020). Comparing the mRNA Expression Profile of Psoas Major and Longissimus Dorsi Muscles in Pig. Indian Journal of Animal Research. 54(12): 1490-1496. doi: 10.18805/ijar.B-1249.
To explore the differentially expressed mRNAs between oxidative and glycolytic muscles, Qianbei black pigs were slaughtered and longissimus dorsi muscle (LDM) and psoas major muscle (PMM) were selected and sequenced using Illumina Hiseq TM 4000. Bioinformatics analysis and differentially expressed genes were analyzed by GO and KEGG. qRT-PCR was used to validate the RNA-seq result. As a result, 69 differentially expressed genes were identified, with 46 down regulated genes and 23 up regulated genes in LDM versus PMM, which were categorized into 44 functional groups under three GO classifications. KEGG pathway analysis revealed 20 pathways were enriched. qRT-PCR shows the expression trends of ND6, MYH7, TBX1, FOS and SLC7A5 are consist with the RNA-seq result. We speculated these five genes may involve in differentiation of muscle cells, metabolism of carbohydrate and lipid, deposits of intramuscular fat and transformation of different types of muscle fibers.
  1. Ahn, J., Kim, D. H., Park, H. B., Han, S. H., Hwang, S., Cho, I. C. (2018). Ectopic overexpression of porcine myh1 increased in slow muscle fibers and enhanced endurance exercise in transgenic mice. International Journal of Molecular Sciences. 19: 2959. 
  2. Bee, G. (2007). Birth weight of litters as a source of variation in postnatal growth and carcass and meat quality. Advances in pork production: proceedings of the Banff Pork Seminar. 18: 191-196. 
  3. Bueren, K. L. V., Papangeli, I., Rochais, F., Pearce, K., Roberts, C., Calmont, A. (2010). Hes1 expression is reduced in tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Developmental Biology. 340: 369-380. 
  4. Casalena, G., Daehn, I., Bottinger, E. (2012). Transforming growth factor-², bioenergetics and mitochondria in renal disease. Seminars in Nephrology. 32: 295-303. 
  5. Chikuni, K., Tanabe, R., Muroya, S., Nakajima, I. (2001). Differences in molecular structure among the porcine myosin heavy chain-2a, -2x and -2b isoforms. Meat Science. 57: 311-317. 
  6. Fulcoli, F. G., Huynh, T., Scambler, P. J., Baldini, A. (2009). Tbx1 regulates the bmp-smad1 pathway in a transcription independent manner. Plos One. 4: e6049. 
  7. Funk, J. A., Schenllmann, R. G. (2013). Accelerated recovery of renal mitochondrial and tubule homeostasis with sirt1/    pgc-1 activation following ischemia-reperfusion injury. Toxicology and Applied Pharmacology. 273: 345-354. 
  8. González-Prendes, Rayner, Quintanilla, R., Mármol-Sánchez, Emilio, Pena, R. N., Ballester, M., Cardoso, Tainã Figueiredo. (2019). Comparing the mrna expression profile and the genetic determinism of intramuscular fat traits in the porcine gluteus medius and longissimus dorsi muscles. BMC Genomics. 20: 170. 
  9. Gu, H., Li, J., Ying, F., Zuo, B., Xu, Z. (2019). Analysis of differential gene expression of the transgenic pig with overexpression of pgc1± in muscle. Molecular Biology Reports. 46: 3427-3435.
  10. Karabacak, A., Aytekin, I., Boztepe, S. (2015). Fattening performance and carcass traits of anatolian merino lambs in indoor and outdoor sheepfolds. Indian Journal of Animal Research. 49: 103-108.
  11. Larzul C., Lefaucheur L., Ecolan P., Gogué J., Talmant A., Sellier P., Le R. P., Monin G. (1997). Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass and meat quality traits in large white pigs. Journal of Animal Science. 75: 3126-3137.
  12. Lee, S. H., Joo, S. T., Ryu, Y. C. (2010). Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Science. 86: 166-170. 
  13. Lefaucheur, L., Ecolan, P., Plantard, L., Gueguen, N. (2002). New insights into muscle fiber types in the pig. Journal of Histochemistry and Cytochemistry. 50: 719-730.
  14. Liao, H., Zhang, X. H., Qi, Y. X., Wang, Y. Q., Liu, P. (2016). The relationships of collagen and adamts2 expressionlevels with meat quality traits in cattle. Indian Journal of Animal Research. 52: 167-172.
  15. Loon, L. J. and Goodpaster, B. H. (2006). Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pfluegers Archiv European Journal of Physiology. 451: 606-616. 
  16. Mazloum-Ardakani, M., Ahmadi, R., Heidari, M. M., Sheikh-Mohseni, M. A. (2014). Electrochemical detection of the mt-nd6 gene and its enzymatic digestion: application in human genomic sample. Analytical Biochemistry. 455: 60-64. 
  17. Motohashi N., Uezumi A., Asakura A., Ikemoto-Uezumi M., Mori S., Mizunoe Y., Takashima R., Miyagoe-Suzuki Y., Takeda S., Shigemoto K. (2019). Tbx1 regulates inherited metabolic and myogenic abilities of progenitor cells derived from slow- and fast-type muscle. Cell Death Differ. 26:1024-1036. 
  18. Pane, L. S., Zhang, Z., Ferrentino, R., Huynh, T., Cutillo, L., Baldini, A. (2012). Tbx1 is a negative modulator of mef2c. Human Molecular Genetics. 21: 2485-2496. 
  19. Ramachandran, K., Senagolage, M. D., Sommars, M. A., Futtner, C. R., Omura, Y., Allred, A. L., Barish, G. D. (2019). Dynamic enhancers control skeletal muscle identity and reprogramming. PLoS Biology. 17: e3000467.
  20. Reiner, G., Heinricy, L., MÜLler, E., Geldermann, H., Dzapo, V. (2002). Indications of associations of the porcine FOS proto-oncogene with skeletal muscle fibre traits. Animal Genetics. 33: 49-55.
  21. Ryu, Y. C., Choi, Y. M., Ko, Y., Kim, B. C. (2007). Relationship between serum endocrine factors, histochemical characteristics of longissimus dorsi muscle and meat quality in pigs. Journal of Muscle Foods. 18: 95-108.
  22. Schiaffino, S., Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological Reviews. 91: 1447-1531. 
  23. Velotto, S., Vitale, C., Varricchio, E., Crasto, A. (2014). A new perspective: an italian autochthonous pig and its muscle and fat tissue characteristics. Indian Journal of Animal Research. 48: 143-149. 

Editorial Board

View all (0)