Cloning, Characterization and Bioinformatics Analysis of the Sequences of miR-10a and miR-10b in Sheep (Hu sheep)

DOI: 10.18805/IJAR.B-1208    | Article Id: B-1208 | Page : 522-529
Citation :- Cloning, Characterization and Bioinformatics Analysis of the Sequences of miR-10a and miR-10b in Sheep (Hu sheep).Indian Journal Of Animal Research.2021.(55):522-529
Zhibo Wu, Zhenhan Zhai, Mengyao Wang, Hongxiang Ding, Huibin Shi, Zhilong Tian, Xiaohui Zhang, Yuqin Wang, Caihong Wei, Fadi Li dt407966@163.com
Address : School of Animal Science and Technology, Henan University of Science and Technology, Luoyang-471 003, China.
Submitted Date : 27-09-2019
Accepted Date : 2-03-2021

Abstract

Background: MicroRNAs (miRNAs) are active regulators of numerous biological and physiological processes and play an important role in the regulation of animal ovaries and other reproductive related organs. To understand the molecular mechanisms of miR-10 family, we investigated the molecular characteristics and the relative expression of sheep miR-10a and miR-10b (miR-10a/b) and conducted bioinformatics analysis.
Methods: During the period 2018-2019 total of 20 samples including blood and tissues such as hypothalamus, pituitary and ovary were collected from the Hu sheep raised in the National Meat Sheep Experimental Station of China (Luoyang City, Henan Province, China). Blood was collected from jugular vein by vacuum and anticoagulation blood collection tube and stored in refrigerator at -20°C. The tissues were placed into the cryopreservation tube treated with Diethy pyrocarbonate (DEPC) water and stored in liquid nitrogen. All the samples were processed for isolation and confirmed with biochemical analysis and Polymerase chain reaction (PCR) and Real-time fluorescence quantitative PCR.
Result: The target genes were predicted by three kinds of target gene predicting software. The function of target genes and their involved pathways were obtained by gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The relative expression of miR-10a/b in sheep ovary was extremely significantly higher than that in hypothalamus and pituitary gland (P < 0.01). The relative expression of miR-10b in ovary or pituitary was extremely significantly higher than that of miR-10a (P < 0.01) and the relative expression of miR-10b in hypothalamus was significantly higher than that of miR-10a (P < 0.05). These results serve as a foundation for further study on the Sheep miR-10 family.

Keywords

Bioinformatics analysis Expression level Hu sheep miR-10a miR-10b

References

  1. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism and function. Cell. 116(2): 281-97.
  2. Brannstrom, M. (1995). Effects of tumour necrosis factor alpha (TNF-alpha) on ovulation in the rat ovary. Reproduction Fertility and Development. 7(1): 67-73. 
  3. Dissen, G.A., Romero, C., Paredes, A., Ojeda, S.R. (2002). Neurotropic control of ovarian development. Microscopy Research and Technique. 59(6): 509-515.
  4. Eun, K.J., Won, H.J., Lee, H.S., Wankyu, K., Jisun, L., Shin, C.Y., Jeong K.H. (2018). Hsa-miR-10a-5p downregulation in mutant UQCRB-expressing cells promotes the cholesterol biosynthesis pathway. Scientific Reports. 8(1): 12407. 
  5. Gebremedhn, S., Ali A., Hossain M., Hoelker M., Salilew-Wondim D., Anthony R.V., Tesfaye D. (2021).MicroRNA-Mediated Gene Regulatory Mechanisms in Mammalian Female Reproductive HealthÿInternational Journal of Molecular Sciences. 22(2): 938.
  6. Greenfeld, C.R., Roby, K.F., Pepling, M.E., Babus, J.K., Terranova, P.F., Flaws, J.A. (2006). Tumor Necrosis Factor (TNF) Receptor Type 2 Is an Important Mediator of TNF alpha Function in the Mouse Ovary. Biology of Reproduction. 76(2): 224-31. 
  7. Huang, H., Xie, C., Sun, X., Ritchie, R.P., Zhang, J., Chen, Y.E. (2010). Mir-10a contributes to retinoid acid-induced smooth muscle cell differentiation. Journal of Biological Chemistry. 285(13): 9383-9389.
  8. Jin, Y., Yang, C., Sui, X., Cai, Q., Liu, Z. (2019). Endothelial progenitor cell transplantation attenuates lipopolysaccharide-induced acute lung injury via regulating miR-10a/b-5p. Lipids in Health and Disease. 18(1): 136. 
  9. Kershaw, E.E., Flier, J.S. (2004). Adipose tissue as an endocrine organ. The Journal of clinical endocrinology and metabolism. 89(6): 2548-56.
  10. Kleemann, M., Schneider, H., Unger, K., Bereuther, J., Fischer, S., Sander, P., Schneider, E.M., Fischer-Posovszky, P., Christian, U., Riedel, C.U., René, H. and Otte, K. (2018). Induction of apoptosis in ovarian cancer cells by miR-493-3p directly targeting AKT2, STK38L, HMGA2, ETS1 and E2F5. Cellular and Molecular Life Sciences. 76(3): 539-559. 
  11. Kloosterman, W.P. (2004). Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Research. 32(21): 6284-91. 
  12. Kloosterman, W.P., Wienholds, E., De Bruijn, E., Kauppinen, S., Plasterk, R.H.A. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nature methods. 3(1): 27-9.
  13. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The c. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell. 75(5): 843-54.
  14. Li, K., Cui, X., Zhang, Y., Yang, C., Jiang, Y. (2013). Identification of miRNAs associated with sexual maturity in chicken ovary by Illumina small RNA deep sequencing. BMC Genomics. 14: 352.
  15. Li, Q.Q., Du, X., Pan, Z.X., Zhang L.F., Li, Q.F. (2017). The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Mol Cell Endocrinol. 476: 84-95.
  16. Li, Z., Jiang, C., Ye, C., Zhu, S., and Qian, W. (2018). Mir-10a-5p, mir-99a-5p and mir-21-5p are steroid-responsive circulating micrornas. American Journal of Translational Research. 10(5): 1490-1497.
  17. Liu, F., Zhang, G., Lv, S., Wen, X., Liu, P. (2019). Mirna-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting cpeb3/egfr axis. Journal of Cellular Biochemistry. 120: 12618-12627. 
  18. Liu, L.J., Sun X.Y., Yang C.X., Zou X.Y. (2020).MiR-10a-5p restrains the aggressive phenotypes of ovarian cancer cells by inhibiting HOXA1. Kaohsiung Jounal Medical Science. doi: 10.1002/kjm2.12335. Epub ahead of print. PMID: 33332731. 
  19. Llaneza, P., González, C., Fernandez-Iñarrea, J., Alonso, A., Arnott, I., Ferrer-Barriendos, J. (2009). Insulin resistence and health-related quality of life in postmenopausal women. Fertility and Sterility. 91(4): 1370-1373.
  20. Lord, J., Wilkin, T. (2004). Metformin in polycystic ovary syndrome, Current Opinion in Obstetrics and Gynecology. 16(6): 481-6.
  21. Matsuda-Minehata, F., Inoue, N., Goto, Y., Manabe, N. (2006). The regulation of ovarian granulosa cell death by pro- and anti-apoptotic molecules. Journal of reproduction and development. 52(6): 695-705.
  22. Messina, A. and Prevot, V. (2017). Hypothalamic microRNAs flip the switch for fertility. Oncotarget. 8(6)ÿ8993-8994.
  23. Ogunyemi, D., Xu, J., Mahesan, A.M., Rad, S., Kim, E., Yano, J., Alexander, C., Rotter, J.I., Chen, Y.D.I. (2013). Differentially expressed genes in adipocytokine signaling pathway of adipose tissue in pregnancy. Journal of diabetes mellitus. 3(2): 86-95.
  24. Piletiè, K., Kunej, T. (2016). MicroRNA epigenetic signatures in human disease. Archives of Toxicology. 90(10): 2405-2419.
  25. Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Eric Moss. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome biology. 5(3): R13.
  26. Silverman, I.M., Berkowitz, N.D., Gosai, S.J., Gregory, B.D. (2016). Genome-Wide Approaches for RNA Structure Probing. RNA Processing. 505(7485): 701-5.
  27. Sirotkin, A.V., Ovcharenko, D., Grossmann, R., Marcela Lauková, Mlyncek, M. (2009). Identification of micrornas controlling human ovarian cell steroidogenesis via a genome-scale screen. Journal of Cellular Physiology. 219(2): 415-420. 
  28. Shimomura, I., Hammer, R.E., Ikemoto, S., Brown, M.S., Goldstein, J.L. (1999). Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 401(6748): 73-6.
  29. Toms, D., Pan, B., Li, J. (2018). Endocrine Regulation in the Ovary by MicroRNA during the Estrous Cycle. Frontiers in Endocrinology. 8: 378.
  30. Tu, J.J, Yang, Y.Z., Hoi-Hung, A.C., Chen Z.J., and Chan W.Y. (2017). Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Scientific Reports. 7: 41304.
  31. Varendi, K., Kumar, A., Härma, M.A. andressoo, J.O. (2014). Mir-1, mir-10b, mir-155 and mir-191 are novel regulators of bdnf. Cellular and Molecular Life Sciences CMLS. 71(22): 4443-56.
  32. Vidigal, J.A., Ventura, A. (2015). The biological functions of mirnas: lessons from in vivo studies. Trends in Cell Biology. 25(3): 137-47.
  33. Yeruva, L., Pouncey, D., Eledge, M.R., Bhattacharya, S., Luo, C., Weatherford, E.W., Ojcius, D.M., Rank, R.G. (2016). Micrornas modulate pathogenesis resulting from chlamydial infection in mice. Infection and Immunity. 85(1): e00768-16.
  34. Yousef, M., Allmer, J. (2016). Computational miRNomics. Journal of Integrative Bioinformatics. 13(5):1-2.
  35. Zou, Q., Li, J., Song, L., Zeng, X., Wang, G. (2016). Similarity computation strategies in the microrna-disease network: a survey. Briefings in Functional Genomics. 15(1): 55-64. 

Global Footprints