Loading...

Overexpression of hemA and hemL in Bacillus subtilis Promotes Overexpression of 5-aminolevulinic Acid 

DOI: 10.18805/ijar.B-1193    | Article Id: B-1193 | Page : 1235-1240
Citation :- Overexpression of hemA and hemL in Bacillus subtilis Promotes Overexpression of 5-aminolevulinic Acid.Indian Journal of Animal Research.2020.(54):1235-1240
Jinni Liu, Zhaowei Ye, Haigang Wu, Jicheng Liu, Yuesheng Gong jinniliu@126.com
Address : Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464 000, PR China.
Submitted Date : 22-08-2019
Accepted Date : 13-02-2020

Abstract

Bacillus subtilis strains were constructed that overexpressed the glutamyl t-RNA reductase (HemA) and glutamyl t-RNA synthase (HemL). The target proteins accounted for 11 and 13% of the total soluble protein in maltose induced extracts, respectively. The culture media from these strains was red with wavelength maxima near 400 nm indicating elevated levels of porphyrins. The 5-aminolevulinic acid content for these strains reached 42.57 and 39.78 mg/L after 24 h of induced growth and 65.23 and 68.45 mg/L, respectively, after 60 h. Therefore, hemA and hemL overexpression enhanced the biosynthesis of 5-aminolevulinic acid and these strains can be used for its purification.

Keywords

Bacillus subtilis Expression vector Glutamyl-tRNA reductase gene Glutamyl-tRNA synthesis gene 5-aminolevulinic acid

References

  1. Akram N A and Ashraf M., (2013). Regulation in plant stress tolerance by apotential plant growth regulator 5-aminolevulinic acid. Journal of Plant Growth Regulation. 32(3): 663-679. 
  2. Basharat Ali, C R Huang, Z Y Qi., (2013). 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical and ultrastructural changes in seedlings of oilseed rape. Environmental Science and Pollution Research. 20(10): 7256-7267. 
  3. Cornelius J F, Slotty P J, Elkhatib M., (2014). Enhancingthe effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells. Photodiagnosis Photodyn Ther. 11(1):1-6.
  4. Fukuhara H, Kureishi M, Khoda T., (2015). The utility of a flexible fluorescence-cystoscope with a twin mode monitor for the 5-aminolevulinic acid-mediated photodynamic diagnosis of bladder cancer. Plos One. 10(9): e0136416.
  5. Gao J J, Feng X X, Duan C H., (2013). Effect of 5-aminolevulinic acid (ALA) on leaf photosynthesis and fruit quality of apples. Journal of Fruit Science. 30(6):944-951. 
  6. Guyotat J, Pallud J, Armoiry X., (2016). 5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-    Grade Gliomas: A Systematic Review. Adv Tech Stand Neurosurg. 43: 61-90. 
  7. Hotta Y, Tanaka T, Takaoka H., (2014). New physiological effects of 5-Aminolevulinic acid in plants: the increase of photosynthesis,
  8. chlorophyll content and plant growth. Bioscience Biotechnology and Biochemistry. 61(12):2025-2028. 
  9. Hu Z,Fan H,Lv G., (2015),5-aminolevulinic acid-mediated sonodynamic therapy induces anti-tumor effects in malignant melanoma via p53-mi2,-34a-Sirt1 axis. J Dermatol Sci. 79(2): 155-162. 
  10. Huang W Q, Shi Y, Lei T C., (2012). Antifungai effect of delta-aminolevulinic acid mediated photodynamic therapy on three strains of Kratinophilic fungi in vitro. Medical Journal of Wuhan University. 33(3):345-349.
  11. Jin F P., (2011). Influence of 5-aminolevlinic acid-mediated photodynamic therapy on EGFR signaling pathway of esophageal cancer. Southern Medical University. 
  12. Kang Z, Zhang J, Zhou J., (2012). Recent advances in microbialproduction of delta-aminolevulinic acid and vitamin B12. Biotechnol Adv. 30(6): 1533-1542ÿ
  13. Li L J., (2004). Biochemical diagnosis and laboratory determination of porphyrin, porphyrin bilirubin and delta-aminolevulinic acid. Journal of Medern Laboratory Medicine. 19(3): 59-63.
  14. Li Shuang, Li H X, Liu H., (2007). High- level expression of bacillus subtilis hemA gene in Escherichia coli and the effect on the 5-ALA biosynthes is pathway. China Biotechnology. 27(6): 82-86. 
  15. Ma N, Qi L, Gao JJ., (2015). Effects of 5-aminolevulinic acid on cutting growth under high temperature condition and leaf chlorophyll fast fluorescence characteristics of Ficus carica L. Journal of Nanjing Agricultural University. 38(4):546-553.
  16. Mascal M and Dutta S., (2015). Synthesis of the natural herbicide delta-aminolevulinic acid from cellulose-derived 5-    (chloromethyl) furfural. Green Chem. 13(1): 40-41. 
  17. Qi Y X, Yang M M, Gao W., (2005). Expression of vitreoscilla hemoglobin gene (vgb) in E. coli. Hei longjiang Journal of Animal Science and Veterinary Medicine. 8:7-9.
  18. Rajalaxmi Behera, M.D. Kothekar, D.S. Kale, K. Krishnamurthi, A.R. Sirothia, D.R. Kalorey, M.S. Patil., (2016). Study of mutations in aminolevulinic acid dehydratase (ALAD) gene in cattle from fly ash zone in Maharashtra, India. Indian Journal of Animal Research. 50:19-22.
  19. Shen M, Duan C H, Zhang Z P., (2011). Effects of exogenous ALA on thinning and fruit quality in‘Hosui’pear (Pyrus pyrifolia). Acta Horti-culturae Sinica. 38(8):1515-1522. 
  20. Wang K., (2017). Construction of Recombinant Yeast for Production of 5-Aminolevulinate Acid and Optimization of Fermentation Process, University of Jinan.
  21. Wang L J, Wang Z H, Li Z Q., (2004). Promotion of 5-aminolevulinic acid on enhancing apple fruit coloration. Journal of Fruit Science. 21(6): 512-515. 
  22. Wang Y and LIU M., (2015). Research of fluorescence Intensity produced by endogenous protoporphyrin IX Which Introduced by 5-ALA in oral squamous cell carcinoma. Labeled Immunoassays and Clin Med. 22(7):678-681.
  23. Watanabe K, Tanaka T, Hotta Y., (2000). Improving salt tolerance of cotton seedling with 5-aminolevulinic acid. Plant Growth Regulation. 32: 99-100. 
  24. Wozniak M, Dusszachniewicz K, Ziolkowski P., (2015). Insulin-like growth factor-2 is induced following 5-aminolevulinic acid-    mediated photodynamic therapy in SW620 human colon cancer cell line. Int J Mol Sci. 16(10): 23615-23629.
  25. Xu K Q., (2014). Clinical Biochemistry Test, Bei jing: People2 s Medical Publishing House Co,.LTD, 1079-2065.
  26. Xu L, Zhang W, Li B., (2015). Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-    structural disorders in crickweed (Malachium aquaticum L). Pestic Biochem Physiol. 125: 53-61.
  27. Yang M M, Zhang W W, Chen Y L, Gong Y S., (2013). Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb Cell Fact. 9:55.
  28. Zhang J L, Kang Z, Qian S D., (2018). Construction of recombinant saccharomyces cerevisiae for production of 5-Aminolevulinic acid. Journal of Food Science and Biotechnology. 37(3): 232-239. 
  29. Zhang S H, Zou Y L, Song X., (2017). Advances in 5-aminolevulinic acid microbial production. Chinese Journal of Bioprocess Engineering. 9(15):65-70.
  30. Zhang Y X, Chen X F, Liu Y H., (2017). Review of current applications of 5-ALA-PDT in glioma treatment. Progress in Modern Biomedicine. 11:2155-2157
  31. Zhao C H, L in J P, Liu X X., (2005). Production of 5-aminolevulinic acid by recombinant E. coli over-expressing the hemA gene of itself. Chinese Journal of Bioprocess Engineering. 3(4): 36 -53. 

Global Footprints