29-kDa: A Potential Candidate for Anti-Tick Vaccine Antigen Source as Immunogenic and Stage Reactive Targeting Hard-Bodied Hyalomma Ticks (Ixodidae)

DOI: 10.18805/ijar.B-1191    | Article Id: B-1191 | Page : 71-77
Citation :- 29-kDa: A Potential Candidate for Anti-Tick Vaccine Antigen Source as Immunogenic and Stage Reactive Targeting Hard-Bodied Hyalomma Ticks (Ixodidae).Indian Journal Of Animal Research.2021.(55):71-77
Kashif Kamran, Cristian A. Villagra, Asim Iqbal, Asmatullah Kakar, Constaza Schapheer, Muhammad Kamran Taj, Abid Ali, Saima Siddiqui kashifkamran944@gmail.com
Address : Department of Zoology, University of Balochistan Quetta Pakistan.
Submitted Date : 15-08-2019
Accepted Date : 20-12-2019


The objective of present study is to develop a vaccine against Hyalomma hard-bodied tick and to analyze relevant experimental data on immunized indigenous horse breed Morna. Montanide (ISA-50) adjuvant-based vaccine induced significantly (p < 0.02) higher antibody titre through intradermal route with 99.98% vaccine efficacy. Humoral response was determined though indirect ELISA; where peak level of serum antibody was recorded after six weeks interval of post-immunization. Most of hematology and biochemical parameters remained consistent to normal reference values. Our report also indicates a significant percentage decline in the numbers of engorged ticks, eggs mass, eggs number and increased tick rejection. The animal travel history can promote tick burden and is a potential risk factor. Based on biological and hematological parameters, it is possible to conclude that 29-kDa antigen can be used as an effective antigen vaccine candidate to control tick infestation detected through humoral response.


Adjuvant Anti-tick vaccine ELISA Risk factor 29-kDa


  1. Ali, A., Khan, M.A., Zahid, H., Yaseen, P.M., Khan, M.Q., Nawab, J., Rehman, Z.U., et al (2019). Seasonal dynamics, record of ticks infesting humans, wild and domestic animals and molecular phylogeny of Rhipicephalus microplus in Khyber Pakhtunkhwa Pakistan. Frontiers in Physiology. 10: 793.
  2. Andreotti, R. (2006a). Performance of two Bm86 antigen vaccine formulation against tick using crossbreed bovines in stall test. Revista Brasileira de Parasitologia Veterinária. 15:97-100.
  3. Andreotti, R., Garcia, M.V., Cunha, R.C. and Barros, J.C. (2013b). Protective action of Tagetes minuta (Asteraceae) essential oil in the control of Rhipicephalus microplus (Canestrini, 1887) (Acari: Ixodidae) in a cattle pen trial. Veterinary Parasitology. 197:341-345.
  4. Arnou, R., Icardi, G., De Decker, M., Ambrozaitis, A., Kazek, M.P., Weber, F. and Van Damme, P. (2009). Intradermal influenza vaccine for older adults: a randomized controlled multicenter phase III study. Vaccine. 27:7304-7312.
  5. Aros, K., Carrasco, J., Briones, R. and Tadich, T.A. (2017). Haematological and serum biochemical reference values for urban-working equines in Chile. Austral Journal of Veterinary Sciences. 49:27-33.
  6. Asmaa, N.M., ElBably, M.A. and Shokier, K.A. (2014). Studies on prevalence, risk indicators and control options for tick infestation in ruminants. Beni-Suef University Journal of Basic and Applied Sciences. 3:68-73.
  7. Bimerew, L.G., Demie, T., Eskinder, K., Getachew, A., Bekele, S., Cheneke, W., Sahlemariam, et al. (2018). Reference intervals for hematology test parameters from apparently healthy individuals in southwest Ethiopia. Sage Open Medicine. 6:1-10.
  8. Bisen, S., Mandal, S.C., Sanyal, P.K., Pal, S., Ghosh, R.C. and Singh, M. (2011). Effect of some phytotherapeutic agents on egg production of Rhipicephalus (Boophilus) microplus. Indian Journal of Animal Research. 45:289-294.
  9. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72:248-254.
  10. Cywiñska, A., Czopowicz, M., Witkowski, L., Górecka, R., Degórski, A., Guzera, M., et al. (2015). Reference intervals for selected hematological and biochemical variables in Hucul horses. Polish Journal of Veterinary Sciences. 18:439-445.
  11. England, M.E., Phipps, P., Medlock, J.M., Atkinson, P.M., Atkinson, B., Hewson, R. and Gale, P. (2016). Hyalomma ticks on northward migrating birds in southern Spain: Implications for the risk of entry of Crimean Congo haemorrhagic fever virus to Great Britain. Journal of Vector Ecology. 41:128-134.
  12. Gargili, A., Estrada-Pena, A., Spengler, J.R., Lukashev, A., Nuttall, P.A. and Bente, D.A. (2017). The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Research. 144:93-119.
  13. Harris, P.N., Ketheesan, N., Owens, L. and Norton, R.E. (2009). Clinical features that affect indirect-hemagglutination-    assay responses to Burkholderia pseudomallei. Clinical Vaccine Immunology. 16:924-930.
  14. Iqbal, A., Iram, S., Gul, S. and Panezai, M.A. (2016). Analysis of immune response in goats Capra hircus lehri against different doses of cement cone extract antigen taken from ticks (ixodidae) emulsified with different adjuvants. Pakistan Journal of Zoology. 48:1179-1184.
  15. Iqbal, A., Sajid, M.S., Khan, M.N. and Khan, M.K. (2013). Frequency distribution of hard ticks (Acari: Ixodidae) infesting bubaline population of district Toba Tek Singh, Punjab, Pakistan. Parasitology Research. 112:535-541.
  16. Jabbar, A., Abbas, T., Saddiqi, H.A., Qamar, M.F. and Gasser, R.B. (2015). Tick-borne diseases of bovines in Pakistan: major scope for future research and improved control. Parasites and Vectors. 8:283.
  17. Javed, K. (2013). Identification of ticks and tick borne-hemoparasitic diseases in equines of district Lahore. Ph.D. Thesis, Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan.
  18. Javed, K., Ijaz, M., Ali, M.M., Khan, I., Mehmood, K. and Ali, S. (2014). Prevalence and hematology of tick borne hemoparasitic diseases in Equines in and around Lahore. Pakistan Journal of Zoology. 46:401-408.
  19. Kaiser, M.N. and Hoogstraal, H. (1964). The Hyalomma ticks (Ixodoidea, Ixodidae) of Pakistan, India and Ceylon, with keys to subgenera and species. Acarologia. 6:257-286.
  20. Kernif, T., Djerbouh, A., Mediannikov, O., Ayach, B., Rolain, J.M., Raoult, D., Parola, P. and Bitam, I. (2012). Rickettsia africae in Hyalomma dromedarii ticks from sub-Saharan Algeria. Ticks and Tick-Borne Diseases. 3:377-379.
  21. Kesdangsakonwut, S., Sunden, Y., Aoshima, K., Iwaki, Y., Okumura, M., Sawa, H. and Umemura, T. (2014). Survival of rabid rabbits after intrathecal immunization. Neuropathology. 34:277-283.
  22. Kesdangsakonwut, S., Sunden, Y., Aoshima, K., Iwaki, Y., Okumura, M., Sawa, H. and Umemura, T. (2014). Survival of rabid rabbits after intrathecal immunization. Neuropathology. 34:277-283.
  23. Kröber, T. and Guerin, P.M. (2007). Tick blood meal: From a living animalor from a silicone membrane?. Altex. 24:39-41.
  24. Mead, P., Hook, S., Niesobecki, S., Ray, J., Meek, J., Delorey, M., Prue, C. and Hinckley, A. (2018). Risk factors for tick exposure in suburban settings in the Northeastern United States. Ticks and Tick-Borne Diseases. 9:319-324.
  25. Miller, R., Estrada-Peña, A., Almazán, C., Allen, A., Jory, L., Yeater, K. and de León, A. A. P. (2012). Exploring the use of an anti-tick vaccine as a tool for the integrated eradication of the cattle fever tick, Rhipicephalus (Boophilus) annulatus. Vaccine. 30:5682-5687.
  26. Olmeda, A.S., Pérez, J.L., Martín-Hernández, R., Torrente, M. and Valcárcel, F. (2008). Toxicity of oxalic acid against adult Hyalomma lusitanicum ticks (Ixodida: Ixodidae) in laboratory conditions: LD50. Journal of Medical Entomology. 45: 715-719.
  27. Pradeep, B.S., Renukaprasad, C. and Souza, P.E. (2012). Evaluation of the commonly used acaricides against different stages of the cattle tick Boophilus microplus by using different in vitro tests. Indian Journal of Animal Research. 46:248-252.
  28. Rehman, A., Jingdong, L., Chandio, A.A. and Hussain, I. (2017). Livestock production and population census in Pakistan: Determining their relationship with agricultural GDP using econometric analysis. Information Processing in Agriculture. 4:68-177.
  29. Rizzoli, A., Silaghi, C., Obiegala, A., Rudolf, I., Hubálek, Z., Földvári, G. and Kazimírová, M. (2014). Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Frontiers in Public Health. 2:251.
  30. Sangwan, N. and Sangwan, A.K. (2019). Molecular characterization of anti-platelet aggregating proteins in salivary gland extracts of Hyalomma anatolicum ticks. Indian Journal of Animal Research. 53:441-466.
  31. Singh, N.K., Gelot, I.S., Bhat, S.A., Singh, H. and Singh, V. (2015). Detection of acaricidal resistance in Hyalomma anatolicum anatolicum from Banaskantha district, Gujarat. Journal of Parasitic Diseases. 39: 563-566.
  32. Steen, N.A., Barker, S.C. and Alewood, P.F. (2006). Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon. 47:1-20.
  33. Walker, A.R. (2003). Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports, Edinburgh. pp. 86-89.
  34. Walton, R. M. (Ed.). (2013). Equine Clinical Pathology. John Wiley and Sons,. Iowa. New York, USA. pp.15-35.

Global Footprints