Modeling of Ambient Environment and Thermal Status Relationship of Pig’s Body in a Pig Barn

DOI: 10.18805/ijar.B-1186    | Article Id: B-1186 | Page : 1049-1054
Citation :- Modeling of Ambient Environment and Thermal Status Relationship of Pig’s Body in a Pig Barn.Indian Journal Of Animal Research.2020.(54):1049-1054
Jayanta Kumar Basak, Elanchezhian Arulmozhi, Fawad Khan, Frank Gyan Okyere, Jihoon Park, Hyeon Tae Kim bioani@gnu.ac.kr
Address : Department of Bio-systems Engineering, Gyeongsang National University (Institute of Agriculture and Life Science), Jinju 52828, Korea.
Submitted Date : 30-07-2019
Accepted Date : 2-11-2019

Abstract

An experiment was conducted to evaluate the performance of temperature model (T model), relative humidity model (H model), temperature-humidity model (TH model), and temperature-humidity index model (THI model) in predicting pig’s body surface temperature (PBT). Infrared Sensor (IR) was used to measure PBT at different locations: left side (LS), right side (RS), forehead (FH) and back side (BS). Ambient environmental parameters inside the room such as temperature (ART), relative humidity (RRH) and CO2 concentration were measured using livestock environment management system (LEMS). THI model was selected as the best model in making more accurate prediction in both training (R2=0.72, RMSE=0.80, RSE=0.26 and MAPE=2.08) and validation (R2=0.74, RMSE=1.10, RSE=0.40 and MAPE=2.80) stages. For more precise modeling, apart from temperature and humidity data other environmental factors inside pig’s barn (CO2 concentration, wind speed, air pressure etc.) as well as growth factors (body weight, feed intake etc.) may be included in models.

Keywords

Ambient environment Infrared Sensor Pig’s body temperature Regression models

References

  1. Adair, E.R., Black, D.R. (2003). Thermoregulatory responses to RF energy absorption. Bioelectromagnetics. 6: 17-38. DOI: 10.1002/bem.10133.
  2. Albright, J.L. (1993). Feeding behaviour of dairy cattle. Journal of Dairy Science. 76: 485–498. DOI: org/10.3168/jds.S0022-    0302 (93)77369-5.
  3. Basak, J.K., Qasim, W., Okyere, F.G., Khan, F.G., Lee, Y.J., Park, J., Kim, H.T. (2019). Regression analysis to estimate morphology parameters of pepper plant in a controlled greenhouse system. Journal of Biosystems Engineering. 44: 57-68. DOI: org/10.1007/s42853-019-00014-0.
  4. Berry, R.J., Kennedy, A.D., Scott, S.L., Kyle. B.L., Shaefer, A.L. (2003). Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: potential for mastitis detection. Canadian Journal of Animal Science. 83: 687-693. DOI: org/10.4141/A03-012.
  5. Burri, M., Wechsler, B., Gygax, L., Weber, R. (2009). Influence of straw length, sow behavior and room temperature on the incidence of dangerous situations for piglets in a loose farrowing system. Applied Animal Behaviour Science. 117: 181-189.DOI:10.1016/j.applanim.2008.12.005.
  6. Chakraborty, A., Baruah, A., Sarmah, B.C., Goswami, J., Bora, A., Dutta, D.J., Biswas, R.K., et al. (2018). Physiological responses in pigs on antioxidant supplementation during summer and winter. Indian Journal of Animal Research. 52(11): 1557-1559. DOI: 10.18805/ijar.B-3401. 
  7. Cervantes, M., Antoine, D., Valle, J.A., Vásquez, N., Camacho, R.L., Bernal, H., Morales, A. (2018). Effect of feed intake level on the body temperature of pigs exposed to heat stress conditions. Journal of Thermal Biology. 76: 1-7. DOI: 10.1016/j.jtherbio.2018.06.010. 
  8. Costa, L.N., Stelletta, C., Cannizzo, C., Gianesella, M. (2010). The use of thermography on the slaughter-line for the assessment of pork and raw ham quality. Italian Journal of Animal Science. 6: 704–706. DOI: org/10.4081/ijas.2007.1s.704.
  9. Darlington, R.B., Hayes, A.F. (2016). Regression Analysis and Linear Models: Concepts, Applications and Implementation. Guilford Publications.
  10. Ghoreishi, M., Hossini, Y., Maftoon, M. (2012). Simple models for predicting leaf area of mango (Mangifera indica L.). Journal of Biology and Earth Sciences. 2: 845–853.
  11. Levine, J.A. (2004). Nonexercise activity thermogenesis (NEAT): environment and biology. American Journal of Physiology-Endocrinology and Metabolism. 286: 675-685. DOI: 10.1152/ajpendo.00562.2003.
  12. Mader, T.L., Davis, M.S., Brown-Brandl, T. (2006). Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. 84: 712-719. DOI: 10.2527/2006. 843712x.
  13. Morales, A., Cota, S.E.M., Ibarra, N.O., Arce, N., Htoo, J.K., Cervantes, M. (2016). Effect of heat stress on the serum concentrations of free amino acids and some of their metabolites in growing pigs. Journal of Animal Science. 94: 2835-2842. DOI: 10.2527/jas.2015-0073.
  14. Morera, P., Basirico, L., Hosoda, K., Bernabucci, U. (2012). Chronic heat stress up-regulates leptin and adiponectin secretion and expression and improves leptin, adiponectin and insulin sensitivity in mice. Journal of Molecular Endocrinology. 48: 129-138. DOI: 10.1530/JME-11-0054.
  15. Qisthon, A., Busono, W., Surjowardojo, P., Suyadi. (2017). The potential of the development of Holstein crossbreed dairy cows in tropical lowland Indonesia: study of physiological and milk production by body cooling treatment. Indian Journal of Animal Research. Article Id: B-554. DOI: 10. 18805/ijar.v0iOF.6992.
  16. Ramesh, V., Saseendran, P.C. (2002). Effect of enrichment of environment for better economic reproductive performance of sows. Indian Journal of Animal Research. 36(2): 98-101. 
  17. Renaudeau, D., Anais, C., Tel, L., Gourdine, J.L. (2010). Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function. Journal of Animal Science. 88: 3715-3724. DOI: org/10.2527/jas.2009-2169.
  18. Rezende, E. and Bacigalupe, L.D. (2015). Thermoregulation in endotherms: physiological principles and ecological consequences. Journal of Comparative Physiology B. 185: 709–727. DOI: 10.1007/s00360-015-0909-5.
  19. Ross, J.W., Hale, B.J., Gabler, N.K., Rhoads, R.P., Keating, A.F., Baumgard, L.H. (2015). Physiological consequences of heat stress in pigs. Animal Production Science. 55: 1381-1390. DOI: org/10. 1071/AN15267.
  20. Sagonas, K., Meiri, S., Valakos, E.D., Pafilis, P. (2013). The effect of body size on the thermoregulation of lizards on hot, dry Mediterranean islands. Journal of Thermal Biology. 38: 92-97. DOI: 10.1016/j.jtherbio.2012.11.006.
  21. Sülia, T., Halasa, M., Benyedaa, Z., Bodaa, R., Belákb, S., Avilésc, M.M., Carriónc, E.F., Vizcaíno, J.M.S. (2017). Body temperature and motion: Evaluation of an online monitoring system in pigs challenged with porcine reproductive and respiratory syndrome virus. Research in Veterinary Science. 114: 482-488. DOI: 10.1016/j.rvsc.2017.09.021.
  22. Warriss, P.D., Pope, S.J., Brown, S.N., Wilkins, L.J., Knowles, T.G. (2006). Estimating the body temperature of groups of pigs by thermal imaging. Vet Record. 158: 331-334. DOI: 10.1136/ vr.158.10.331.
  23. Wilson, T.E., Crandall, C.G. (2011). Effect of thermal stress on cardiac function. Exercise and Sport Sciences Reviews. 39: 12-17. DOI: 10.1097/JES.0b013e318201eed6. 
  24. Yazgan, K. (2017). Determining heat stress effect in Holstein dairy cattle using daily milk yield and meteorological data obtained from public weather station in Sanliurfa province of Turkey. Indian Journal of Animal Research. 51(6): 1002-1011. DOI: 10.18805/ijar.v0i0f.38.

Global Footprints