Anti-Inflammatory, Antipyretic and Analgesic Potential of Zilla spinosa in Animal Model

DOI: 10.18805/ijar.B-1183    | Article Id: B-1183 | Page : 889-894
Citation :- Anti-Inflammatory, Antipyretic and Analgesic Potential of Zilla spinosa in Animal Model.Indian Journal Of Animal Research.2020.(54):889-894
Riaz Ullah, Abdelaaty A. Shahat, Ali S. Alqahtani, Omer Mohammed Almarfadi, Mohammad Sayer M Alharbi, Syed Rizwan Ahamad, Syed Saeed Ali rullah@ksu.edu.sa
Address : Department of Pharmacognosy (Medicinal, Aromatic & Poisonous Plants Research Center), College of Pharmacy, King Saud University Riyadh Saudi Arabia.
Submitted Date : 15-07-2019
Accepted Date : 31-12-2019

Abstract

The anti-inflammatory, antipyretic and analgesic activities of two concentrations (250 and 500 mg/kg) of the chloroform and butanol fractions of Zilla spinosa were determined. The carrageenan-induced rat paw edema assay was exercised for assessing the anti-inflammatory activity in rats, yeast-induced hyperthermia was utilized to assess the antipyretic activity in mice and the analgesic activity was measured by three different methods (hot-plate test model in mice, tail flick test in mice and acetic acid-induced writhing in mice). The antioxidant activity was studied by using the DPPH assay. The chloroform fraction of the methanol extract of Z. spinosa (ZSC) demonstrated the maximum inhibition of inflammation (50% at 500 mg/kg; 44% at 250 mg/kg). The chloroform fraction showed significant antipyretic activities (p < 0.001 at 500 mg/kg) after 60 and 120 min of administration. ZSC also exhibited significant analgesic activity (p < 0.001). The butanol fraction (ZSB) was inactive in all the biological screening assays.

Keywords

Biological activities Butanol fraction Chloroform fraction Z. spinosa

References

  1. Abouri, M., Mousadik, A., Msanda, F., Boubaker, H., Saadi, B., Cherifi, K. (2012). An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int J Med Plant Res. 1: 99-123.
  2. Al-Rehaily, A.J., Al-Said, M.S., Al-Yahya, M.A., Mossa, J.S., Rafatullah, S. (2002). Ethnopharmacological studies on allspice (Pimenta dioica) in laboratory animals. Pharm Biol. 40: 200-205.
  3. Amor, E.C., Quanico, J.P., Perez, G.G. (2009). Analgesic activity of extracts of Kyllinga monocephala. Pharm Biol. 47: 624-627.
  4. Amri, E. (2014). The role of selected plant families with dietary ethnomedicinal species used as anticancer. J Med Plant Studies. 2: 28-39.
  5. Cadirci, E., Halici, Z., Yayla, M. et al. (2016). Blocking of urotensin receptors as new target for treatment of carrageenan induced inflammation in rats. Peptides. 82: 35–43.
  6. Chandrasekharan, N.V. (2002). COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure and expression. Proc Nat Acad Sci USA. 99: 13926-13931.
  7. El-Sharabasy, F., Naima, Z.M. (2013). Chemical constituents and biological activity from chloroform extract of Zilla spinose. Int J Pharm Pharm Sci. 5: 422-427. 
  8. El-Toumy, S.A., El-Sharabasy, F.S., Ghanem, H.Z., El-Kady, M.U., Asmaa, F.K. (2011). Phytochemical and pharmacological studies on Zilla spinose. Aust J Basic Appl Sci. 5: 1362-1370.
  9. Finnerup, N.B., Attal, N., Haroutounian, S. et al. (2015). Pharmaco-
  10. -therapy for neuropathic pain in adults: a systematic review and meta-analysis. The Lancet Neurology. 14: 162–173.
  11. Geronikaki, A.A., Gavalas, A.M. (2006). Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-    inflammatory activity. Comb Chem High Throughput Screen. 9: 425-442.
  12. Karawya, M.S., Wassel, G.M., El-Menshawi, B.S. (1974). Phytochemical study of Zilla spinosa (Turra) Prantl. General analysis. Carbohydrates and lipids. Die Pharmazie. 29: 60-61.
  13. Longhi-Balbinot D. T., Lanznaster D., Baggio C. H. et al (2012). Anti-inflammatory effect of triterpene 3â, 6â, 16â-trihydroxylup-20(29)-ene obtained from Combretum leprosum Mart & Eich in mice. Journal of Ethnopharmacology. 142: 59–64. 
  14. Miranda, H.F., Sierralta, F., Pinardi, G. (2001). An isobolographic analysis of the adrenergic modulation of diclofenac antinociception. Anesth Analges. 93: 430-435.
  15. Mothana, R.A.A., Al-Said, M.S., Al-Rehaily, A.J., Thabet, T.M., Awad, N.A., Lalk, M., Lindequist, U. (2012). Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. ex Sprague. Food Chem. 130: 344-349.
  16. Ruviaro, L.F., Filippin, L.I. (2012). Prevalence of chronic pain in a Basic Health Unit of a middle-sized city. Revista Dor. 13: 128–131.
  17. Sajid, M., Khan, M.R., Shah, S.A., Majid, M., Ismail, H., Maryam, S., Batool, R., Younis, T. (2017). Investigations on anti-    inflammatory and analgesic activities of Alnus nitida Spach (Endl). Stem bark in Sprague Dawley rats. J Ethnopharmacol. 198: 407–416.
  18. Tariq, A., Adnan, M., Iqbal, A., Sadia, S., Fan, Y., Nazar, A., Mussarat, S., Ahmad, M., et al. (2018). Ethnopharmacology and toxicology of Pakistani medicinal plants used to treat gynecological complaints and sexually transmitted infections. South Afr J Botany. 114: 132-149.
  19. Ullah, R., Alsaid, M.S., Shahat, A.A., Naser, A.A., Al-Mishari, A.A., Adnan, M., Tariq, A. (2018). Antioxidant and hepato
  20. -protective effects of methanolic extracts of Zilla spinosa and Hammada elegans against carbon tetrachloride-    induced hepatotoxicity in rats. Open Chem. 16: 133-140.
  21. Vane, J. (1987). The evolution of non-steroidal anti-inflammatory drugs and their mechanisms of action. Drugs. 33: 18-27.
  22. Winter, C.A., Risley, E.A., Nuss, G.W. (1962). Carrageenan-induced oedema in hind paw of the rats as an assay for anti-    inflammatory drugs. Proc Soc Exp Biol Med. 111: 544-547.
     

Global Footprints