Anti-inflammatory, Antipyretic and Analgesic Activities of Persimmon (Diospyros kaki) Leaves in Animal Model

DOI: 10.18805/ijar.B-1170    | Article Id: B-1170 | Page : 1000-1005
Citation :- Anti-inflammatory, Antipyretic and Analgesic Activities of Persimmon (Diospyros kaki) Leaves in Animal Model.Indian Journal Of Animal Research.2020.(54):1000-1005
Abdelaaty A. Shahat, Ali S. Alqahtani, Riaz Ullah, Abdullah Al-Mishari, Wafaa Sabry Ahmed ashahat@ksu.edu.sa
Address : Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
Submitted Date : 28-06-2019
Accepted Date : 18-11-2019

Abstract

Diospyros kaki L. (Ebenaceae) fruit and leaves are traditionally used for the treatment of hypertension and angina, as well as for their antithrombotic and anti-inflammatory effects. We investigated the anti-inflammatory, analgesic and antipyretic activities of Diospyros kaki L. (Ebenaceae) in order to scientifically validate its pharmacological importance. In the current study, the anti-inflammatory, analgesic and antipyretic activities of ethyl acetate (Per-1), n-butanol (Per-2) and aqueous (Per-3) fractions of a methanol extract of Persimmon leaves were tested. Wistar rats weighing 190–210 g (for the anti-inflammatory assay) and male albino mice (Swiss) weighing 18–24 g (for the antipyretic and analgesic assays) were utilized as the experimental animals. The rats were separated into eight groups (for anti-inflammatory) and seven group (for antipyretic), each consisting of six rats. Each sample was treated orally and two doses: 100 and 200 mg/kg body weight were used in these experiments. The Per-3 sample at a dose of 200 mg/kg produced the highest inflammation inhibition at 59.28%. The same sample at a dose of 200 mg/kg lowered body temperature from 38°C of hyperthermia mice back to 36.65 ± 0.12°C after 120 min, close to the normal temperature (35.21 ± 0.29°C). In the tail flick model, sample Per-3 showed 67.74% highest nociception inhibition. Similar results were obtained with Acetic acid and hot-plate assay. These results confirm that the n-butanol and aqueous fractions of persimmon are active and may be used for further pharmacological screening.

Keywords

Animal models Carrageenan Diospyros kaki L. Pharmacology

References

  1. Akagi T, Henry IM, Tao R, Comai L, (2014). A Y-chromosome–
  2. encoded small RNA acts as a sex determinant in persimmons. Science. 346: 646-50.
  3. Al-Rehaily AJ, Al-Said MS, Al-Yahya MA, Mossa JS, Rafatullah S. (2002). Ethnopharmacological studies on allspice (Pimenta dioica) in laboratory animals. Pharm Biol. 40: 200-5.
  4. Amor EC, Quanico JP, Perez GG, (2009). Analgesic activity of extracts of Kyllinga monocephala. Pharm Biol. 47: 624-7.
  5. Baird Lambert J, Jamieson D. (1983). Possible mediators of the writhing response induced by acetic acid or phenylbenzoquinone in mice. Clin Exp Pharmacol Physiol. 10: 15-20.
  6. Bei W, Peng W, Zang L, Xie Z, Hu D, Xu A. (2007). Neuroprotective effects of a standardized extract of Diospyros kaki leaves on MCAO transient focal cerebral ischemic rats and cultured neurons injured by glutamate or hypoxia. Planta med. 73: 636-43.
  7. Butt MS, Sultan MT, Aziz M, Naz A, Ahmed W, Kumar, N, Imran M. (2015). Persimmon (Diospyros kaki) fruit: hidden phytochemicals and health claims. EXCLI J. 14: 542-61.
  8. Carlson RP, Chang J, Lewis AJ. (1985). Modulation of mouse ear edema by cyclooxygenase and lipoxygenase inhibitors and other pharmacologic agents. Agents and Actions. 17: 197-204.
  9. Dalvi LT, Moreira DC, Alonso A, de Avellar IG, Hermes-Lima M. (2018). Antioxidant activity and mechanism of commercial Rama Forte persimmon fruits (Diospyros kaki). Peer J. 6: e5223; 1-22.
  10. Dejun Zhang, Ruofei Jiang, Eun-Kyung Hong, Guosheng Tan, Dianxiang Lu, Yongping Li, Wangtao Yuan (2017). The pharmacologically active components of Oxytropis falcata bunge reduce ischemic-reperfusion injury in the rat heart. Legume Research, 40 (2): 264-70
  11. Guo D, Luo Z. (2011). Genetic relationships of the Japanese persimmon Diospyros kaki (Ebenaceae) and related species revealed by SSR analysis. Genet Mol Res. 10: 1060-68.
  12. Jagadeesh S. Sanganal K. Jayakumar Jagadeesh S. Sanganal, K. Jayakumar, G.M. et al (2011). Evaluation of acute and subchronic anti-inflammatory effect of cow urine in rats. Indian J. Anim. Res. 45 (3): 198 - 202.
  13. Luka J, Badau S, Mbaya A, Gadzama J, Kumshe H. (2014). Acute toxicity study and effect of prolonged administration (28 days) of crude ethanolic root extract of Diospyros mespiliformis Hochst (Ebenaceae) on clinical, haematological and biochemical parameters of albino rats. J Ethnopharmacol. 153: 268-73.
  14. Malik K, Ahmad M, Bussmann RW, Tariq A, Ullah R, Alqahtani AS, Shahat AA, Rashid, N, Zafar M, Sultana S. (2018). Ethnobotany of anti-hypertensive plants used in northern Pakistan. Front Pharmacol. 9: 789. 1-18.
  15. Miranda HF, Sierralta F, Pinardi G. (2001). An isobolographic analysis of the adrenergic modulation of diclofenac antinociception. Anesth Analges. 93:430-5.
  16. Mir-Marques A, Domingo A, Cervera, ML, De-La-Guardia M. (2015). Mineral profile of kaki fruits (Diospyros kaki L.). Food Chem. 172: 291-7.
  17. Morris CJ. (2003). Carrageenan-induced paw edema in the rat and mouse. In: [Winyard P.G., Willoughby D.A. (eds)] Inflammation Protocols. Methods Mol Biol. 225: 115-21.
  18. Mothana RA, Al-Said MS, Al-Rehaily AJ, Thabet TM, Awad NA, Lalk M, Lindequist U. (2012). Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. ex Sprague. Food Chem. 130: 344-9.
  19. Rahman H, Khan I, Hussain A, Shahat AA, Tawab A, Qasim M, Adnan M, Al-Said MS, Ullah R, Khan SN. (2018). Glycyrrhiza glabra HPLC fractions: identification of Aldehydo Isoophiopogonone and Liquirtigenin having activity against multidrug resistant bacteria. BMC Complement Altern Med. 18:140.
  20. Rosa MD, Willoughby D. (1971). Screens for anti inflammatory drugs. J. Pharm. Pharmacol. 23(4): 297-8.
  21. Schlede E, Genschow E, Spielmann H, Stropp G, Kayser D. (2005). Oral acute toxic class method: A successful alternative to the oral LD50 test. Regul Toxicol Pharmacol. 42: 15-23.
  22. Thomford NE, Dzobo K, Chopera D, Wonkam A, Skelton M, Blackhurst D, Chirikure S, Dandara C. (2015). Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceuticals. 8: 637-63.
  23. Tomazetti J, Ávila DS, Ferreira APO, Martins JS, Souza FR, Royer C, Rubin MA, Oliveira MR, Bonacorso HG, and Martins MAP. (2005). Baker yeast-induced fever in young rats: characterization and validation of an animal model for antipyretics screening. J Neurosci Methods.147: 29-35.
  24. Turner B, Munzinger J, Duangjai S, Temsch EM, Stockenhuber R, Barfuss MH, Chase M. W, Samuel R. (2013). Molecular phylogenetics of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers. Mol Phylogenet Evol. 69: 740-63.
  25. Vinegar R, Schreiber W, Hugo R. (1969). Biphasic development of carrageenin edema in rats. J. Pharmacol. Exp. Ther. 166: 96-103.
  26. Winter CA, Risley EA, Nuss GW. (1962). Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med. 111: 544-7.
  27. Xie C, Xie Z, Xu X, Yang D. (2015). Persimmon (Diospyros kaki L.) leaves: a review on traditional uses, phytochemistry and pharmacological properties. J Ethnopharmacol. 163: 229-40. 

Global Footprints