In-vivo Efficacy of Poultry and Fish Probiotics on Green Mussel, Perna viridis, Resistance against Vibrio alginolyticus

DOI: 10.18805/ijar.B-1158    | Article Id: B-1158 | Page : 1532-1537
Citation :- In-vivo Efficacy of Poultry and Fish Probiotics on Green Mussel, Perna viridis, Resistance against Vibrio alginolyticus.Indian Journal Of Animal Research.2020.(54):1532-1537
A.A. Laith, S. Badr, M.K. Ros-Amira, I.S. Hassan, A.W.M. Effendy, M. Najiah laith.abdul@umt.edu.my
Address : School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
Submitted Date : 7-06-2019
Accepted Date : 9-04-2020

Abstract

The efficiency of using lactic acid bacteria derived from chicken to be used in fish to limit microbial infections in aquaculture was investigated. Gram-positive isolates were cultured on Man Rogosa Sharp agar (MRS). Identification of bacterial strains was done by analyzing nucleotide sequence of the 16S rRNA gene. Lactobacillus plantarum (98%) was isolated from Oreochromis niloticus and Enterococcus durans (96%) was isolated from Gallus gallus. The sequences were deposited in GenBank with the Accession No. of MF197402 and MF197403, respectively. Experimental mussels were divided into 3 groups; control group fed commercial feed only, Treatment 1 and Treatment 2 were fed with commercial feed supplemented with the candidate probiotics isolated from chicken and fish, respectively, for 21 days. P. viridis were immersed in V. alginolyticus 1.0 ×106 CFU/ml. L. plantarum significantly affected haemocyte count, lysozyme activity and mortality rate, whereas E. durans significantly affect lysozyme activity only. 

Keywords

Enterococcus durans Haemocyte Lactobacillus plantarum lysozyme Perna viridis

References

  1. Aguilar-Macias, O., Ojeda-Ramirez, J., Campa-Cordova, A., Saucedo, P. (2010). Evaluation of natural and commercial probiotics for improving growth and survival of the pearl oyster, pinctada mazatlanica, during late hatchery and early field culturing. Journal of the World Aquaculture Society. 41: 447–454.
  2. Akhter, N., Wu, B., Memon, A.M., Mohsin, M. (2015). Probiotics and prebiotics associated with aquaculture: a review. Fish and Shellfish Immunology. 45: 733-41.
  3. Allam, B. and Raftos, D. (2015). Immune responses to infectious diseases in bivalves. Journal of Invertebrate Pathology. 131: 121 136.
  4. Austin, B. and Austin, D.A. (2007). Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Springer Science and Business Media, Berlin.
  5. Balebona, M.C., Andreu, M.J., Bordas, M.A., Zorrilla, I., Morinigo, M.A. and Borrego, J.J. (1998). Pathogenicity of Vibrio alginolyticus for Cultured Gilt-Head Sea Bream (Sparus aurata L.). Applied and Environmental Microbiology. 64: 4269-4275.
  6. Bauchau, A.G. (1981). Crustaceans. In: Ratcliffe NA, Rowley AF (eds) Invertebrate Blood Cells (Volume 2). Academic Press, London. pp. 385-420.
  7. Beck, B.R., Kim, D., Jeon, J., Lee, SM, Kim, H.K., Kim, O.J., Lee, J.I., Suh, B.S., Do, H.K., Lee, K.H., Holzapfel, W.H. (2015). The effects of combined dietary probiotics Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 on innate immunity and disease resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish immunology. 42: 177-183.
  8. Bugge, D.M., Hégaret, H., Wikfors, G.H., Allam, B. (2007). Oxidative burst in hard clam (Mercenaria mercenaria) haemocytes. Fish Shellfish immunology. 23: 188–196.
  9. Dos Santos, F.S., Neves, R.A., de Carvalho, W.F., Krepsky, N., Crapez, M.A. (2018). Evaluation of the immune responses of the brown mussel Perna perna as indicators of fecal pollution. Fish and Shellfish Immunology. 80: 115-123.
  10. Galdeano, C.M., Cazorla, S.I., Dumit, J.M., Vélez, E., Perdigón, G. (2019). Beneficial Effects of Probiotic consumption on the immune system. Annals of Nutrition and Metabolism. 74: 115-124. 
  11. Hoseinifar, S.H., Sun, Y.Z., Wang, A. and Zhou, Z. (2018). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in Microbiology. 9: 24-29.
  12. Juhel. G., Bayen, S., Goh, C., Lee, W.K., Kelly, B.C. (2017). Use of a suite of biomarkers to assess the effects of carbamazepine, bisphenol A, atrazine, and their mixtures on green mussels, Perna viridis. Environmental Toxicology and Chemistry. 36: 429-441.
  13. Kwan, T.N. and Bolch, C.J. (2015). Genetic diversity of culturable Vibrio in an Australian blue mussel Mytilus galloprovincialis hatchery. Diseases of Aquatic Organisms. 116: 37-46.
  14. Li, H., Parisi, M.G., Toubiana, M., Cammarata, M., Roch, P. (2008). Lysozyme gene expression and haemocyte behaviour in the Mediterranean mussel, Mytilus galloprovincialis, after injection of various bacteria or temperature stresses. Fish Shellfish Immunology. 25: 143-152.
  15. Liu, Z., Wang, L., Lv, Z., Zhou, Z., Wang, W., Li, M., Yi, Q., Qiu, L., Song, L. (2018). The cholinergic and adrenergic autocrine signalling pathway mediates immunomodulation in oyster Crassostrea gigas. Frontiers in Immunology. 9: 284.
  16. Martins, M.L., Mourino, J.L.P., Fezer, G.F., Buglione-Neto, C.C., Garcia, P., Silva, B.C., Jatoba, A., Vieira, F.N. (2010). Isolation and experimental infection with Vibrio alginolyticus in the sea horse, Hippocampus reidi Ginsburg, 1933 (Osteichthyes: Syngnathidae) in Brazil. Brazilian Journal of Biology. 70:205-209.
  17. Najwa, M.N., Daniel, A.M., Mat Amin, K.A., Effendy, A.W. (2015). Detection of virulence genes in Vibrio alginolyticus isolated from Green Mussel, Perna viridis. Journal Teknologi (Sciences and Engineering). 77: 19-23.
  18. Parry, R.M., Chandon, R.C., Shahank, K.M. (1965). A rapid and sensitive assay of muramidase. Proceedings of the Society for Experimental Biology and Medicine. 119: 384-386.
  19. Pirarat, N., Kobayashi, T., Katagiri, T., Maita, M., Endo, M. (2006). Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Veterinary Immunology and Immunopathology. 113: 339-347.
  20. Prado, S., Romalde, J.L., Barja, J.L. (2010). Review of probiotics for use in bivalve hatcheries. Veterinary Microbiology. 145: 187-197.
  21. Sivakumar, N., Sundararaman, M., Selvakumar, G. (2012). Probiotic effect of Lactobacillus acidophilus against Vibriosis in juvenile shrimp (Penaeus monodon). African Journal of Biotechnology. 11: 15811-15818.
  22. Smith, V.J. (2010). Immunology of invertebrates: cellular. In Encyclopedia of life sciences.
  23. Takahashi, K.G. and Itoh, N. (2011). Lysozymes in molluscs. In Bondad-Reantaso MG, Jones JB, Corsin F, Aoki T (eds.) Diseases in Asian Aquaculture VII. Fish Health Section, Asian Fisheries Society, Selangor, Malaysia.
  24. Travers, M.A., Miller, K.B., Roque, A., Friedman, C.S. (2015). Bacterial diseases in marine bivalves. Journal of Invertebrate Pathology. 131:11-31.
  25. Wang, Q., Cao, R., Ning, X., You, L., Mu, C., Wang, C., Wei, L., Cong, M., Wu, H., Zhao, J. (2016). Effects of ocean acidification on immune responses of the Pacific oyster Crassostrea gigas. Fish and Shellfish Immunology. 49: 24-33.
  26. Xue, Q., Hellberg, M.E., Schey, K.L., Itoh, N., Eytan, R.I., Cooper, R.K., La Peyre, J.F. (2010). A new lysozyme from the eastern oyster, Crassostrea virginica, and a possible evolutionary pathway for i-type lysozymes in bivalves from host defence to digestion. Cellular and Molecular Life Sciences. 64: 82-95.
  27. Zhao, J., Li, C., Chen, A., Li, L., Su, X., Li, T. (2010). Molecular characterization of a novel big defensin from clam Venerupis philippinarum. PLoS ONE. 5:e13480.

Global Footprints