Published In
Indian Journal of Animal Research
Article Metrics

0
Views
0
Citations
Reviewed By
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Research Article
volume 54 issue 8 (august 2020) : 957-961, Doi: 10.18805/ijar.B-1138
Molecular Characterization of the TLR2 Gene in Datong Yak
1College of Life Science and Engineering, Northwest Minzu University, Lanzhou-730 030, China.
Submitted13-04-2019|
Accepted14-09-2019|
First Online 02-12-2019|
Cite article:- Peng Shuai, Chen Lang, Zheng Tian-Yu, Zhang Li, Li Zhuo, Tian Xiao-Jing, Ma Zhong-Ren, Liu Li-Xia (2019). Molecular Characterization of the TLR2 Gene in Datong Yak. Indian Journal of Animal Research. 54(8): 957-961. doi: 10.18805/ijar.B-1138.
ABSTRACT
The coding region of Datong yak’s TLR2 gene was amplified and subjected to sequence characterization. The coding region of the Datong yak TLR2 gene comprised a single ORF of 2355 nucleotides that coded for 784 amino acids with translatable products. The coding region of the TLR2 gene of the Datong yak contained two nucleotide mutation sites, namely, G677A and G1587A. G677A exhibited a missense mutation. After comparing nucleotide and amino acid sequences among related species and constructing the phylogenetic relationships, Datong yak sequences were shown to be highly similar to those of Bos taurus. The Datong yak TLR2 protein simultaneously possessed leucine-rich repeats, a TIR domain and an aldehyde dehydrogenase active site. Results showed that the protein plays an important role in the body’s immune regulation mechanism.
REFERENCES
- Bhaladhare, A., Sharma, D., Kumar, A., Sonwane, A., Chauhan, A., Singh, R., Prakash, O. (2016). Single nucleotide polymorphisms in toll-like receptor genes and case-control association studies with bovine tuberculosis. Veterinary World. 9(5): 458-464.
- Chu Qin., Li Dong., Hou Shiyu., Shi Wanhai., Liu Lin., Wang Yachun. (2014). Direct sequencing of DNA pooling for screening highly informative SNPs in dairy cattle. Hereditas. 36(07): 691-696.
- De Castro, E., Sigrist, C. J. A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P, S., Gasteiger, E., Bairoch, A., Hulo, N. (2006). ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research. 34(Web Server): W362-W365.
- Fan Fengxia., Luo Zhengjie. (2018). Datong Yak Improvement effect observation of local yak. Chinese Animal Husbandry and Veterinary Digest. 34 (05): 85.
- Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. 41: 95-98.
- Kumar, H., Kawai, T., Akira, S. (2009). Toll-like receptors and innate immunity. Biochemical & Biophysical Research Communications. 388(4): 621-625.
- Lin Baoshan., Lan Daoliang., Huang Cai., Chen Yabing., Huang Yong., Li Jian. (2014). Cloning and Sequence Analysis TLR2 Gene from Yak. Progress In Veterinary Medicine. 35(07): 59-63.
- Lu Yanbo., Wan Ying., Wu Yuzhang. (2003). Prediction of the secondary structure and B cell epitope for the E protein of SARS coronavirus. Immunological Journal. 19(06): 407-410.
- Medzhitov, R., Preston-Hurlburt, P., Janeway, C. A. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 388 (6640): 394-397.
- Ma Li., Xiao Xiaojun., Liu Zhigang. (2014). The role of Toll-like receptors in allergic asthma. Chinese Journal of Cellular and Molecular Immunology. 30 (09): 989-992.
- Means, T. K., Golenbock, D. T., Fenton, M. J. (2000). Structure and function of Toll-like receptor proteins. Life Sciences. 68(3):241-258.
- Petersen, T. N., Brunak, S., Von Heijne, H., Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 8(10): 785-786.
- Ranjan, R., Bhong, C. D., Parmar, S. N. S., Joshi, C. G. (2015). Molecular characterization of 3’UTR of Nramp1 gene in Gaolao breed of cattle. Indian Journal of Animal Research. 49(1): 31-35.
- Saiga, H., Shimada, Y., Takeda, K. (2011). Innate Immune Effectors in Mycobacterial Infection. Clinical and Developmental Immunology. 347594.
- Sen, S., Shukla, R., Ranjan, R., Parmar, S. N. S. (2015). Analysis of genetic polymorphism of IL8R receptor gene a marker associated with bovine mastitis among crossbred cattle. Indian Journal of Animal Research. 49(3): 292-294.
- Shergojry, S. A., Ramesha, K. P., Mir, N. A., Aarif, O. (2014). Nucleotide sequence polymorphism within Exon 8 of Heat Shock Protein (HSP) 90AA1 gene and its association with milk production traits in Deoni cows. Indian Journal of Animal Research. 48(5): 408-412.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution. 30 (12): 2725–2729.
- Tibayrenc, M. A. (2004). A molecular biology approach to tuberculosis. Proceedings of the National Academy of Sciences. 101(14): 4721-4722.
- Trowsdale, J., Parham, P. (2004). Mini review: defense strategies and immunity related genes. European journal of immunology. 34(1): 7-17.
- Wang Jiawen., Li Yongxiang., Jiang Qingyan., Wang Lina. (2018). Research progress of Toll-like receptors and their agonists. Progress in Physiological Sciences. 49 (04): 289-292.
- Wang, Y., Liu, S., Li, Y., Wang, Q., Shao, J., Chen, Y., Xin, J. (2016). Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1â production through the NF-êB pathway via toll-like receptor 2 and MyD88. Developmental & Comparative Immunology. 55:111-118.
- Wang Lijuan., Cai Zhen. (2009). Toll-like receptors and hematological malignancies recent progress. Chinese Journal of Cancer Biotherapy. 16(03): 301-304.
- Ye Hong., Zhang Shuang., Tong Lin., Pan Yanchao., Zhang Mingxia. (2018). Signal peptide prediction and conservation analysis of alpha chain of mammalian MHC class I molecules. China Tropical Medicine. 18 (08): 754-756+774.
- Yan, S., Wu, G. (2014). Signal peptide of cellulase. Applied Microbiology and Biotechnology. 98(12): 5329-5362
- Zhou Feng., Xue Yun., Long Ta., Zhao Zhanqin., Ma Beibei. (2012). Amplification and Sequence Analysis of TLR2 Gene in Nanyang Cattle. Progress In Veterinary Medicine. 33 (08): 17-22.
- Zhao Z., Xue Y., Hu Z., Zhou F., Ma B., Long T., Xue Q., Liu H. (2017). Toll-like receptor 2 gene polymorphisms in Chinese Holstein cattle and their associations with bovine tuberculosis. Veterinary Immunology and Immunopathology. 186: 51-54.
Disclaimer :
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Copyright :
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Published In
Indian Journal of Animal Research