Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 11 (november 2020) : 1317-1323

Effects of physically effective fiber on rumen and milk parameters in dairy cows: A review

Natnael D. Aschalew, Tao Wang, Gui-xin Qin, Yu-guo Zhen, Xue-feng Zhang, Xue Chen, Emmanuel M. Atiba, Adams Seidu
1College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
Cite article:- Aschalew D. Natnael, Wang Tao, Qin Gui-xin, Zhen Yu-guo, Zhang Xue-feng, Chen Xue, Atiba M. Emmanuel, Seidu Adams (2019). Effects of physically effective fiber on rumen and milk parameters in dairy cows: A review. Indian Journal of Animal Research. 54(11): 1317-1323. doi: 10.18805/ijar.B-1104.
The objective of this paper is to review the effects of physically effective fiber on rumen function, milk yield, and milk composition and the optimum requirement for dairy cows. Dietary fiber is a vital component of feed that regulates the rumen functions and improves milk quality and milk yield in ruminants. The appropriate particle size and quantity of dietary fiber in the diets of dairy cows help to prevent the occurrence of ruminal disorders and promote healthy rumen functioning and productivity. Currently, sub-acute ruminal acidosis is a common problem in a modern dairy production system. The disease is caused by lack of adequate amount of physically effective dietary fiber in animal feed. Long sized dietary fiber particles stimulate chewing and saliva production would help to maintain reticulo-ruminal buffering capacity. The optimum requirement of fiber for dairy cows depends on the physical form of the fiber source, the chemical composition of the total ration, the stage of lactation and level of production.
  1. Allen, M.S. (1997). Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science, 80: 1447-1462. 
  2. Allen, M.S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science, 83: 1598-    1624. 
  3. Ametaj, B.N., Zebeli, Q., Saleem, F., Psychogios, N., Lewis, M.J., Dunn, S.M., Wishart, D.S. (2010). Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics, 6: 583-594. 
  4. Beauchemin, K.A., Yang, W.Z., Rode, L.M. (2003). Effects of particle size of alfalfa-based dairy cow diets on chewing activity, rumen fermentation and milk production. Journal of Dairy Science, 86: 630-643.
  5. Bickhart, D.M. and Weimer, P.J. (2018). Symposium review: Host–rumen microbe interactions may be leveraged to improve the productivity of dairy cows. Journal of Dairy Science, 101: 7680-7689.
  6. Cao, Y.C., Gao, Y., Xu, M., Liu, N.N., Zhao, X.H., Liu, C.J., Yao, J.H. (2013). Effect of ADL to aNDF ratio and ryegrass particle length on chewing, ruminal fermentation, and in situ degradability in goats. Animal Feed Science and Technology, 186: 112-119. 
  7. Chaidate, I., Somchai C., Jos, N., Henk, H. (2014). A cow-level association of ruminal pH on body condition score, serum beta- hydroxybutyrate and postpartum disorders in Thai dairy cattle. Animal Science Journal, 85: 861-867.
  8. Chang, H.N., Kim, N.J., Kang, J., Jeong, C.M. (2010). Biomass-derived volatile fatty acid plat form for fuels and chemicals. Biotechnology and Bioprocess Engineering, 15: 1-10.
  9. Dennis, S.M., Arambel, M.J., Bartley, E.E., Dayton, A.D. (1983). Effect of Energy Concentration and Source of Nitrogen on Numbers and Types of Rumen Protozoa1. Journal of Dairy Science, 66: 1248-1254.
  10. DeVries, T.J., Dohme, F., Beauchemin, K.A. (2008). Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: Feed sorting. Journal of Dairy Science, 91: 3958-3967. 
  11. Dijkstra, J., Ellis, J.L., Kebreab, E., Strathe, A.B., López, S., France, J., Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172: 22-33. 
  12. Enemark, J.M. (2008). The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. The Veterinary Journal, 176: 32-43.
  13. Erfle, J.D., Mahadevan, S., Sauer, F.D. (1979). Effect of diet quality on adenosine-52 -triphosphate concentration and adenylate energy charge of rumen microbes from Fistulated Cows1. Journal of Dairy Science, 62: 284-291.
  14. Esmaeili, M., Khorvash, M., Ghorbani, G.R., Nasrollahi, S.M., Saebi, M. (2016). Variation of TMR particle size and physical characteristics in commercial Iranian Holstein dairies and effects on eating behaviour, chewing activity, and milk production. Livestock Science, 191: 22-28.
  15. Heinrichs, J. and Kononoff, P. (2002). Evaluating particle size of forages and TMRs using the new Penn State Forage Particle Separator. Pennsylvania State University, College of Agricultural Sciences, Cooperative Extension DAS, 02-42. 
  16. Heinrichs, J. (2013). The Penn State Particle Separator. Penn State Cooperative Extension. https://extension.psu.edu/penn-state-particle-separator.
  17. Humer, E., Petri, R.M., Aschenbach, J.R., Bradford, B.J., Penner, G.B., Tafaj, M., Zebeli, Q. (2018). Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. Journal of Dairy Science, 101: 872-888. 
  18. John, M. (2005). Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics. How the rumen works. Csiro Publishing, Collingwood, Australia.
  19. Kleen, J.L. and Cannizzo, C. (2012). Incidence, prevalence, and impact of SARA in dairy herds. Animal Feed Science and Technology,    172: 4-8.
  20. Kononoff, P.J. and Heinrichs, A.J. (2003a). The effect of corn silage particle size and cottonseed hulls on cows in early lactation. Journal of Dairy Science, 86: 2438-2451. 
  21. Krause, K.M. and Oetzel, G.R. (2006). Understanding and preventing sub-acute ruminal acidosis in dairy herds: A review. Anima and Feed Science Technology, 126: 215-236.
  22. Kröger, I., Humer, E., Neubauer, V., Reisinger, N., Zebeli, Q. (2019). Feeding Diets moderate in physically effective fibre alters eating and feed sorting patterns without improving ruminal pH, but impaired liver health in dairy cows. Animals, 9: 128.
  23. Leonardi, C., Giannico, F., Armentano, L.E. (2005a). Effect of water addition on selective consumption (sorting) of dry diets by dairy cattle. Journal of Dairy Science, 88: 1043-1049.
  24. Li, F., Li, Z., Li, S., Ferguson, J., Cao, Y., Yao, J., Yang, T. (2014). Effect of dietary physically effective fiber on ruminal fermentation and the fatty acid profile of milk in dairy goats. Journal of Dairy Science, 97: 2281-2290.
  25. Li, S., Danscher, A.M. and Plaizier, J.C. (2013). Sub-acute Ruminal Acidosis (SARA) in dairy cattle: new developments in diagnostic aspects and feeding management. Canada Journal of Animal Science, 94: 353-364. 
  26. Linn, J. (2005). Watch Particle Size and NDF Levels in High Corn Silage Diets. Forage Focus–Dairy. http://www.midwestforage.org/pdf/200.pdf.pdf.
  27. Liu, Q., Wang, C., Guo, G., Huo, W.J., Zhang, Y.L., Pei, C.X., Wang, H. (2018). Effects of branched-chain volatile fatty acids supplementation on growth performance, ruminal fermentation, nutrient digestibility, hepatic lipid content and gene expression of dairy calves. Animal Feed Science and Technology, 237: 27-34.
  28. Luo, J., Ranadheera, C.S., King, S., Evans, C., Baines, S. (2017). In vitro investigation of the effect of dairy propionibacteria on rumen pH, lactic acid and volatile fatty acids. Journal of Integrative Agriculture, 16: 1566-1575.
  29. Mertens, D.R. (1997). Creating a system for meeting for fiber requirements of dairy cows. Journal of Dairy Sciences, 80: 1463-1481. 
  30. Mertens, D.R. (2000). Physically effective NDF and its use in dairy ration explored. Feedstuffs, 72: 11.
  31. Miller-Cushon, E.K. and DeVries, T.J. (2017). Feed sorting in dairy cattle: Causes, consequences, and management. Journal of Dairy Science, 100: 4172-4183. 
  32. Morgante, M., Stelletta, C., Berzaghi, P., Gianesella, M., Andrighetto, I. (2007). Sub-acute rumen acidosis in lactating cows: an investigation in intensive Italian dairy herds. Journal of Animal Physiology and Nutrition, 91: 226-234. 
  33. Nasrollahi, S.M., Ghorbani, G.R., Khorvash, M., Yang, W.Z. (2014). Effects of grain source and marginal change in lucerne hay particle size on feed sorting, eating behaviour, chewing activity, and milk production in mid lactation Holstein dairy cows. Journal of Animal Physiology and Nutrition, 98: 1110-1116. 
  34. Neubauer, V., Petri, R., Humer, E., Kröger, I., Mann, E., Reisinger, N., Zebeli, Q. (2018). High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows. Journal of Dairy Science, 101: 2335-2349.
  35. Nocek, J. E. (1997). Bovine acidosis: Implication on laminitis. Journal of Dairy Science, 80: 1005-1028.
  36. NRC, (2001). Nutrient requirements of dairy cattle. National Academies Press. Washington, D.C., USA.
  37. Owens, F.N., Secrist, D.S., Hill, W.J., Gill, D.R. (1998). Acidosis in cattle: a review. Journal of Animal Science, 76: 275-286.
  38. Plaizier, J.C., Krause, D.O., Gozho, G.N., McBride, B.W. (2008). Sub-acute ruminal acidosis in dairy cows: The physiological causes, incidence, and consequences. The Veterinary Journal, 176: 21-31. 
  39. Robin, R.W., Mary, B.H., Jeffrey, L.F., Paul, J.K. (2017). Physically adjusted neutral detergent fiber system for lactating dairy cow rations. II: Development of feeding recommendations. Journal of Dairy Science, 100: 9569-9584
  40. Rojo-Gimeno, C., Fievez, V., Wauters, E. (2018). The economic value of information provided by milk biomarkers under different scenarios: Case-study of an ex-ante analysis of fat-to-protein ratio and fatty acid profile to detect sub-acute ruminal acidosis in dairy cows. Livestock Science, 211: 30-41.
  41. Sova, A.D., LeBlanc, S.J., McBride, B.W., DeVries, T.J. (2013). Associations between herd-level feeding management practices, feed sorting, and milk production in free stall dairy farms. Journal of Dairy Science, 96: 4759-4770.
  42. Sun, Y.Y., Cheng, M., Xu, M., Song, L.W., Gao, M., Hu, H.L. (2018). The effects of sub-acute ruminal acidosis on rumen epithelium barrier function in dairy goats. Small Ruminant Research, 169: 1-7.
  43. Thomson, A.L., Humphries, D.J., Kliem, K.E., Dittmann, M.T., Reynolds, C.K. (2017). Effects of replacing maize silage with lucerne silage and lucerne silage chop length on rumen function and milk fatty acid composition. Journal of Dairy Science, 100: 7127-7138. 
  44. Wang, H.R., Chen, Q., Chen, L.M., Ge, R.F., Wang, M.Z., Yu, L.H., Zhang, J. (2017). Effects of dietary physically effective neutral detergent fiber content on the feeding behavior, digestibility, and growth of 8-to 10-month-old Holstein replacement heifers. Journal of Dairy Science, 100: 1161-1169. 
  45. White, R.R., Hall, M.B., Firkins, J.L., Kononoff, P.J. (2017). Physically adjusted neutral detergent fiber system for lactating dairy cow rations II: Development of feeding recommendations. Journal of Dairy Science, 100: 9569-9584. 
  46. Yang, W.Z. and Beauchemin, K.A. (2005). Effects of physically effective fiber on digestion and milk production by dairy cows fed diets based on corn silage. Journal of Dairy Science, 88: 1090-1098. 
  47. Yang, W.Z. and Beauchemin, K.A. (2006). Effects of physically effective fiber on chewing activity and ruminal pH of dairy cows fed diets based on barley silage. Journal of Dairy Science, 89: 217-228. 
  48. Yang, W.Z., Beauchemin, K.A., Rode, L.M. (2001). Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows1. Journal of Dairy Science, 84: 2203-2216. 
  49. Yansari, A.T., Valizadeh, R., Naserian, A., Christensen, D.A., Yu, P., Shahroodi, F.E. (2004). Effects of alfalfa particle size and specific gravity on chewing activity, digestibility, and performance of Holstein dairy cows. Journal of Dairy Science, 87: 3912-3924.
  50. Zebeli, Q. and Metzler-Zebeli, B.U. (2012). Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Research in Veterinary Science, 93: 1099-1108.
  51. Zebeli, Q., Dijkstra, J., Tafaj, M., Steingass, H., Ametaj, B.N., Drochner, W. (2008). Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. Journal of Dairy Science, 91: 2046-2066. 
  52. Zebeli, Q., Dunn, S.M., Ametaj, B.N. (2011). Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates. Journal of Dairy Science, 94: 2374-2382. 
  53. Zebeli, Q., Tafaj, M., Steingass, H., Metzler, B., Drochner, W. (2006). Effects of physically effective fiber on digestive processes and milk fat content in early lactating dairy cows fed total mixed rations. Journal of Dairy Science, 89: 651-668. 
  54. Zeineldin, M., Aldridge, B., Lowe, J. (2018). Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea. Microbial Pathogenesis, 115: 123-130. 

Editorial Board

View all (0)