Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 7 (july 2020) : 797-804

Changes of follicular fluid composition during estrous cycle: The effects on oocyte maturation and embryo development in vitro

A.A. Mohammed, T. Al-Shaheen, S. Al-Suwaiegh
1Animal and Fish Production Department, College of Agriculture and Food Sciences, Saudi Arabia
Cite article:- Mohammed A.A., Al-Shaheen T., Al-Suwaiegh S. (2019). Changes of follicular fluid composition during estrous cycle: The effects on oocyte maturation and embryo development in vitro. Indian Journal of Animal Research. 54(7): 797-804. doi: 10.18805/ijar.B-1030.
Oocytes are bathed in extracellular fluid of the antral follicles, which is termed follicular fluid (FF). Follicular fluid is synthesized from secretions of theca, granulosa, and cumulus cells and from a transudate of blood plasma. Oocytes persist in meiotic arrest in antral follicles until luteinizing hormone (LH) surge or removal the oocytes from the ovarian follicles. This suggests that FF before LH surge might contain meiosis inhibiting factor(s). The microvasculatory bed of the follicular wall and the composition of FF undergo changes during follicular growth and development, which is important for oocyte maturation and subsequent embryo development. Therefore, it is expected that FF composition and components might change according to timing of FF aspiration from follicles. Hence, negative or positive effects could be expected when FF supplemented during oocyte maturation in vitro. Nutrition effects on microvasculatory bed of follicles and their sizes. Thus, the nutritional status of animals is a factor affected on oocyte maturation and embryo development. The present article reviews and discusses these effects.
  1. Acosta, T.J., Hayashi, K.G., Ohtani, M. et al. (2003). Local changes in blood flow within the preovulatory follicle wall and early corpus luteum in cows. Reproduction, 25(5): 759-767.
  2. Albertini DA. The Mammalian Oocyte (Chapter 2): In Physiology of Reproduction, 4th Knobil and Neill’s page 59-97.
  3. Algriany, O., Bevers, M., Schoevers, E., et al. (2004). Follicle size-dependent effects of sow follicular fluid on in vitro cumulus expansion, nuclear maturation and blastocyst formation of sow cumulus oocytes complexes. Theriogenology, 62(8): 1483-    1497.
  4. Almond, G.W. (1993). Anatomical and endocrine changes associated with the porcine estrous cycle. In Proceedings of the North Carolina Healthy Hogs Seminar. P1.
  5. Araújo, V.R., Gastal, M.O., Wischral, A., et al. (2014). In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone. Theriogenology, 82: 1246–1253.
  6. Artini, P.G., Fasciani, A., Monti, M., et al. (1998). Changes in vascular endothelial growth factor levels and the risk of ovarian hyperstimulation syndrome in women enrolled in an in vitro fertilization program. Fertility and Sterility, 70(3): 560-564.
  7. Avery, B., Strøbech, L., Jacobsen, T., et al. (2003). In vitro maturation of bovine cumulus-oocyte complexes in undiluted follicular fluid: effect on nuclear maturation, pronucleus formation and embryo development. Theriogenology, 59(3-4): 987-999.
  8. Baird, D. and Mitchell, A. (2013). Hormonal control of folliculogenesis: The key to successful reproduction, The Future of the Oocyte: Basic and Clinical Aspects. Ernst Schering Research Foundation Worshop 2013; 41.
  9. Beam, S.W. and Butler, W.R. (1997). Energy balance and ovarian follicle development prior to the first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biology of Reproduction, 56(1): 133-142.
  10. Bøgh, I.B., Bézard, J., Duchamp, G., et al. (2002). Pure preovulatory follicular fluid promotes in vitro maturation of in vivo aspirated equine oocytes. Theriogenology, 57 (7): 1765-1779.
  11. Bottcher, M., Kluge, B., Tomalak, K., et al. (1992). Influence of follicular-fluid on fertilization of in vitro matured bovine oocytes. Reprod. Domest. Anim. 27 (2): 101-111.
  12. Brown BW and Radziewic T. (1997) Follicular fluid used in culture media to produce sheep embryos. Theriogenology,; 47 (1): 275-275.
  13. Campbell, B.K., Scaramuzzi, R.J. and Webb. R. (1995). Control of antral follicle development and selection in sheep and cattle. Journal of Reproduction and Fertility, 49: 335-50.
  14. Campbell, B.K., Souza, C., Gong, J., et al. (2003). Domestic ruminants as models for the elucidation of the mechanisms controlling ovarian follicle development in humans. Reprod Suppl, 61: 429-43.
  15. Carolan, C., Lonergan, P., Monget, P., et al. (1996). Effect of follicle size and quality on the ability of follicular fluid to support cytoplasmic maturation of bovine oocytes. Molecular Reproduction and. Developement, 43(4): 477-483.
  16. Chauhan, M.S., Palta, P., Das, S.K., et al. (1997). Replacement of serum and hormone additives with follicular fluid in the IVM medium: effects on maturation, fertilization and subsequent development of buffalo oocytes in vitro. Theriogenology, 48(3): 461-469.
  17. Choi, Y.H., Takagi, M., Kamishita, H., et al. (1998). Developmental capacity of bovine oocytes matured in two kinds of follicular fluid and fertilized in vitro. Animal Reproduction Science, 50 (1-2): 27-33.
  18. Chui, D.K., Pugh, N.D., Walker, S.M., et al. (1997). Follicular vascularity—the predictive value of transvaginal power Doppler ultrasonography in an in-vitro fertilization programme: a preliminary study. Human Reproduction, 12(1): 191-196.
  19. Chung, S.O. and Choi, Y.H. (1974). The effects of follicular fluid on in vitro maturation of bovine follicular oocytes. Yonsei. Medical Journal, 15 (2): 147-155.
  20. Coelho Cruz, M.H., Saraiva, N.Z., et al. (2014). Effect of follicular fluid supplementation during in vitro maturation on total cell number in bovine blastocysts produced in vitro. Revista Brasileira de Zootecnia, 43(3): 120-126.
  21. Collins, A.R. and Wright, R.W. (1995). Effects of embryo development of heat treatment and filtration of bovine follicular fluid used to supplement IVM medium. Theriogenology, 43(1): 189-189.
  22. Cosgrove, J.R., Tilton, J.E., Hunter, M.G. et al. (1992). Gonadotropin-independent mechanisms participate in ovarian responses to realimentation in feed-restricted prepubertal gilts. Biology of Reproduction, 47(5): 736-745. 
  23. Cox, N.M. (1997). Control of follicular development and ovulation rate in pigs. Journal Reproduction Fertility Supplement, 52: 31-46.
  24. Ding, J. and Foxcroft, G.R. (1994). Conditioned media produced by follicular shells of different maturity affect maturation of pig oocytes. Biology of Reproduction, 50(6): 1377-1384.
  25. Dostál, J. and Pavlok, A. (1996). Isolation and characterization of maturation inhibiting compound in bovine follicular fluid. Reproduction Nutrition Development, 36(6): 681-690.
  26. Downs, S.M., Daniel, S.A.J., Bomslaeger, E.A., et al. (1989). Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity. Gamete Research, 23: 323-334.
  27. Elmileik, A., Isobe, N. and Terada, T. (1999). Effect of adding follicular fluid to maturation medium, at different stages of nuclear progression, on in vitro development of bovine oocytes. Biology of Reproduction, 60 (suppl. 1): 175.
  28. Elmileik, A., Maeda, T. and Terada, T. (1995). Higher rates of development into blastocyst following the in vitrofertilization of bovine oocytes matured in a medium supplemented with the fluid from large bovine follicles. Animal Reproduction Science, 38: 85-96.
  29. Evans, A.C.O., Duffy, P., Hynes, N., Boland, M.P. (2000). Waves of follicle development during the estrous cycle in sheep. Theriogenology, 53: 699-715.
  30. Friedman, C.I., Seifer, D.B., Kennard, E.A., et al. (1998). Elevated level of follicular fluid vascular endothelial growth factor is a marker of diminished pregnancy potential. Fertility and Sterility, 70(5): 836-839.
  31. Goncalves, P.B., Emanuelli, I.P., Costa, L.F., et al. (2001). Mural granulosa cells are responsible for the inhibitory effect of bovine follicular fluid on oocyte nuclear maturation. Biology of Reproduction, 64 (suppl. 1): 134–135.
  32. Gordon, I. (2003). Establishing Pregnancies with IVP Embryos, In: Laboratory Production of Cattle Embryos (2nd) CABI Publishing UK. page 303 – 321.
  33. Hao, L., Wang, D., Zhang, G., et al. (2014). Vascular endothelial growth factor expression correlated with microvessel density in the antral follicle of sheep ovary. Livestock Sciences, 165: 212–216.
  34. Hinrichs K, Love, C.C., Brinsko S.P., et al. (2002). In vitro fertilization of in vitro-matured equine oocytes: effect of maturation medium, duration of maturation, and sperm calcium ionophore treatment, and comparison with rates of fertilization in vivo after oviductal transfer. Biology of Reproduction, 67(1): 256-262.
  35. Hunter, M.G., Hudson, N., Mitchell, M., et al. (2004). Resumption of follicle growth in gilts after ovarian autografting. Animal Reproduction Sciences, 80(3-4): 317-328.
  36. Hunter, R.H.F., Laeson, R.A.S. and Rowson, L.E.A. (1973). Maturation and fertilization of ovarian oocytes in cattle. Journal Reproduction and Fertility, 30: 327-328.
  37. Kadam, A.L. and Koide, S.S. (1990). Identification of hypoxanthine in bovine follicular fluid. Journal of Pharmaceutical Sciences, 79(12): 1077-1082.
  38. Kadam, A.L. and Koide, S.S. (1991). A follicular fluid factor inhibiting Xenopus oocyte maturation. Endocrine Research, 17(3-4): 343-355.
  39. Kato, H. and Seidel, G.E. (1998). Effects of follicular fluid and follicular walls on bovine oocyte maturation. Theriogenology, 49: 313. 
  40. Kim, K.H., Oh, D.S., Jeong, J.H., et al. (2004). Follicular blood flow is a better predictor of the outcome of in vitro fertilization-    embryo transfer than follicular fluid vascular endothelial growth factor and nitric oxide concentrations. Fertility and Sterility, 82(3): 586-592.
  41. Koos, R.D. (1989). Potential Relevance of Angiogenic Factors to Ovarian Physiology. Seminars in Reproductive Medicine, 7(01): 9-40.
  42. Lee, S.H., Oh H.J., Kim, M.J., et al. (2018). Effect of co-culture canine cumulus and oviduct cells with porcine oocytes during maturation and subsequent embryo development of parthenotes in vitro. Theriogenology, 106(15): 108-116.
  43. Lonergan, P., Khatir, H., Piumi, F., et al. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. Journal of Reproduction and Fertility, 117: 159-167.
  44. Lucy MC, Liu J, Boyd CK, Bracken CJ. (2001). Ovarian follicular growth in sows. Reprod Suppl, 58:.31-45.
  45. Lucy, M.C., Gross, T.S. and Thatcher, W.W. (1990). Effect of intravenous infusion of a soybean oil emulsion on plasma concentration of 15-Keto-13, 14-dihydro-prostaglandin F2a and ovarian function in cycling Holstein heifers. Journal of Reproduction and Fertility, 117: 159-167.
  46. Mackey, D.R., Sreenan, J.M., Roche, J.F. et al. (1999). Effect of acute nutritional restriction on incidence of anovulation and periovulatory estradiol and gonadotropin concentrations in beef heifers. Biology of Reproduction, 61(6): 1601-1607. 
  47. Maylinda, S., Sarah, O.L. and Busono, W. (2018). Role of seasons on the production and reproduction performance of kacang goats (Kambing kacang) in North Middle Timor Regency. Indian Journal of Animal Research, 52(8): 1227-1231.
  48. Meinecke, B. and Meinecke-Tillmann, S. (1981). Induction and inhibition of meiotic maturation of follicle-enclosed porcine oocytes in vitro. Theriogenology, 15: 581-589. 
  49. Miller AT, Picton HM, Hunter MG. Suppression of ovarian activity in the gilt and reversal by exogenous gonadotrophin administration. Animal Reproduction Science, 54(3): 179-193.
  50. Moulavi, F., Hosseini, S.M. (2018). Diverse patterns of cumulus cell expansion during in vitro maturation reveal heterogeneous cellular and molecular features of oocyte competence in dromedary camel. Theriogenology, 119: 259-267.
  51. Mohammed, A.A. (2006). Developmental competence of mouse oocytes reconstructed with G2/M somatic nuclei. Ph.D. Thesis, Institute of Animal Genetics and Breeding, Poland.
  52. Mohammed, A.A. (2008). Contributions of cumulus cells on timing of oocytes maturation and developmental potential. Assiut Journal Agriculture Science, 39: 43-50.
  53. Mohammed, A.A. and Al-Hozab, A. (2018). +(-)catechin raises body temperature, changes blood parameters, improves oocyte quality and reproductive performance of female mice. Indian Journal of Animal Research, (Accepted).
  54. Mohammed, A.A., Al-Suwaiegh, SB. (2016). Effects of Nigella sativa on Mammals’ Health and Production. Advances in Animal and Veterinary Sciences, 4 (12): 630-636.
  55. Mohammed, A.A. (2017). Development of oocytes and preimplantation embryos of mice fed diet supplemented with dunaliella salina. Advances in Animal and Veterinary Sciences, 6(1): 33-39.
  56. Mohammed, A.A., Abd El-Hafiz G.A., Ziyadah, H.M.S. (2012). Effect of dietary urea on ovarian structures in Saidi ewes during follicular and luteal phases. Egyptian Journal of Animal Production, 49(1): 29-35.
  57. Mohammed, A.A., Karasiewicz, J., Papis, K. et al. (2005). Oocyte maturation in the presence of randomly pooled follicular fluid increases bovine blastocyst yield in vitro. Journal of Animal and Feed. Sciences, 14: 501-512. 
  58. Mohammed, A.A., Karasiewicz, J. and Modlinski, J.A. (2008). Developmental potential of selectively enucleated immature mouse oocytes upon nuclear transfer. Molecular Reproduction and Development, 75(8): 1269-1280.
  59. Mohammed, A.A., Karasiewicz, J. Kubacka, J., et al. (2010). Enucleated GV oocytes as recipients of embryonic nuclei in the G1, S, or G2 stages of the cell cycle. Cellular Reprogramming, 12 (4): 427-435.
  60. Mohammed, A.A., Ziyad, H.M. and Abd El-Hafiz, G.A. (2011). Changes of follicular fluid composition in relation to dietary urea level and follicle size during follicular and luteal phases in Saidi Ewes, Theriogenology Insight, 1(1): 31-42.
  61. Moonmaneea, T. and Yammuen-art, S. (2015). Relationships among feed intake, blood metabolites, follicle size and progesterone concentration in ewes exhibiting or not exhibiting estrus after estrous synchronization in the tropics. Agriculture and Agricultural Science Procedia, 5: 151 – 158.
  62. Murphy, M.G., Enright, W.J., Crowe, M.A., et al. (1991). Effect of dietary intake on pattern of growth of dominant follicles during the oestrous cycle in beef heifers. Journal Reproduction and Fertility, 92: 333-338. 
  63. Nandi S, Raghu, H.M., Ravindranatha, B.M., et al. (2008). In vitro development of buffalo oocytes in media-containing fluids from different size class follicles. Reproduction in Domestic Animal, 39(1): 33–38.
  64. Nandi, S., Girish Kumar, V., Manjunatha, B.M., et al. (2008). Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology, 69: 186– 196. 
  65. Oberlender, G., Murgas, L.D.S., Zangeronimo, M.G., et al., (2013). Role of insulin-like growth factor-I and follicular fluid from ovarian follicles with different diameters on porcine oocyte maturation and fertilization in vitro. Theriogenology, 80: 319–327.
  66. Peippo, J. and Bredbacka, P. (1996). Male bovine zygotes cleave earlier than female zygotes in the presence of glucose. Theriogenology, 45(1): 187.
  67. Racowsky, C., Baldwin, K.V., Larabell, C.A., et al., (1989). Down-regulation of membrana granulosa cell gap junctions is correlated with irreversible commitment to resume meiosis in golden Syrian hamster oocytes. European Journal of Cell Biology, 49: 244-251.
  68. Raj, M.P., Naidu, G.N., Srinivas, M., et al., (2018). Effect of preovulatory follicle on fertility in Graded murrah buffaloes (Bubalus bubalis). Indian Journal of Animal Research, 52(8): 834-838.
  69. Romero-Arredondo, A. and Seidel, G.E. Jr. (1996). Effects of follicular fluid during In vitro maturation of bovine oocytes on In vitro fertilization and early embryonic development. Biology of Reproduction, 55: 1012-1016.
  70. Romero-Arredondo, A., Seidel, G.E. Jr. (1994). Effects of bovine follicular fluid on maturation of bovine oocytes. Theriogenology, 41(2): 383-394.
  71. Sirard, M.A., Roy, F., Patrick, B., et al. (1995). Origin of the follicular fluid added to the media during bovine IVM influences embryonic development. Theriogenology, 44(1): 85–94.
  72. Spacek, S. G. and Carnevale E.M. (2018). Impact of equine and bovine oocyte maturation in follicular fluid from young and old mares on embryo production in vitro. Journal Equine Veterinary Science, 68: 94-100. 
  73. Tsafriri, A., Dekel, N. and Bar-Ami, S. (1982). The role of oocyte maturation inhibitor in follicular regulation of oocyte maturation. Journal Reproduction and Fertility, 64: 541-551. 
  74. Tsafriri, A., Liberman, M.E., Koch, Y., et al. (1976). Capacity of immunologically purified FSH to stimulate cyclic AMP accumulation and steroidogenesis in Graafian-follicles and to induce ovum maturation and ovulation in the rat. Journal of Endocrinology, 98: 655-661. 
  75. Valckx, S., De Bie, J., Michiels, E., et al. (2015). The effect of human follicular fluid on bovine oocyte developmental competence and embryo quality. Reproductive BioMedince. Online, 30: 203-307.
  76. Van Blerkom, J. (1998). Epigenetic influences on oocyte developmental competence: Perifollicular vascularity and intrafollicular oxygen. Journal of Assisted Reproduction and Genetics, 15(5): 226–234.
  77. Van Blerkom, J., Antczak, M. and Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Human Reproduction, 12(5): 1047–1055. 
  78. van den Hurk, R. and Santos, R. (2009). Development of fresh and cryopreserved early-stage ovarian follicles,with special attention to ruminants. Animal Reproduction, 6 (1): 72-95. 
  79. Wang, S., Liu, Y., Holyoak, G.R., Hammon, D.S., et al. (1999). Effects of supplementation with fluids from bovine follicles of varied sizes in vitro maturation medium on subsequent embryo development in vitro. Theriogenology, 51(1): 394.
  80. Ward, F., Rizos, D., Corridan, D., et al. (2001). Paternal influence on the time of first embryonic cleavage post insemination and the implications for subsequent bovine embryo development in vitro and fertility in vivo. Molecular Reproduction and Development, 60(1): 47-55.
  81. Webb, R., Nicholas, B., Gong, J.G., et al., (2003). Mechanisms regulating follicular development and selection of the dominant follicle. Reprod Suppl, 61: 71-90.
  82. Yang, M.Y. and Fortune, J.E. (2007). Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Molecular Reproduction and Development, 74: 1095-1104. 
  83. Zimmermann, R.C., Hartman, T., Kavic, S., et al. (2003). Vascular endothelial growth factor receptor 2–mediated angiogenesis is essential for gonadotropin-dependent follicle development. Journal Of Clinical Investigation, 112(5): 659–669.

Editorial Board

View all (0)