Partial sequencing of ESR1 and CDK5RAP2 genes in dogs with mammary tumours 

DOI: 10.18805/ijar.B-1024    | Article Id: B-1024 | Page : 729-733
Citation :- Partial sequencing of ESR1 and CDK5RAP2 genes in dogs with mammary tumours.Indian Journal Of Animal Research.2020.(54):729-733
Iraz Akis, Sinem Ozlem Enginler, Kemal Oztabak, Damla Haktanir, Gizem Atmaca and Neziha Hacihasanoglu Cakmak
Address : Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
Submitted Date : 27-07-2018
Accepted Date : 21-12-2018


Canine mammary tumours (CMT) are among the most common canine cancer types in female dogs. Dogs provide an adaptable model system for human breast cancer studies. It is important to identify the underlying genetic basis to improve knowledge of pathways related to  cancer pathogenesis in both species. In this study, we investigated CMT associated single nucleotide polymorphisms (SNP) in target regions of ESR1 and CDK5RAP2 genes. Partial sequencing of two genes in 25 cases with mammary tumours and 10 dogs with healthy mammary glands was performed. Two previously reported SNPs in ESR1 gene and one previously reported SNP and two novel SNPs were genotyped downstream CDK5RAP2 gene. According to the association analysis performed in cases and controls, no statistically significant association was found between these SNPs and CMTs. Comparison of the results from other studies revealed the genetic heterogeneity of ESR1 and CDK5RAP2 between different dog breeds. Larger datasets of different breeds should be analyzed in further studies to identify the possible effects of the two genes in mammary tumour development.


Association Dog Mammary tumour Single nucleotide polymorphism.


  1. Anghel, A., Raica, M., Narita, D., Seclaman, E., Nicola, T., Ursoniu, S., et al. (2010). Estrogen receptor alpha polymorphisms: correlation with clinicopathological parameters in breast cancer. Neoplasma, 57: 306–315.
  2. Babu, P., Abraham, M.J., Lalithakunjamma, C.R., Vijayan, N., Narayanan, M.K. (2012). An epidemiological study of canine neoplasms. Indian Journal of Animal Research, 46: 196-198.
  3. Borge, K.S., Melin, M., Rivera, P., Thoresen, S.I., Webster, M.T., von Euler, H., Lindblad-Toh, K., Lingaas, F. (2013). The ESR1 gene is associated with risk for canine mammary tumours. BMC Veterinary Research, 9: 69.
  4. Borge, K.S., Borresen-Dale, A.L., Lingaas, F. (2011). Identification of genetic variation in 11 candidate genes of canine mammary tumour. Veterinary Comparative Oncology, 9: 241–250. 
  5. Dahlman-Wright, K., Cavailles, V., Fuqua, S.A., Jordan, V.C., Katzenellenbogen, J.A., et al. (2006). International Union of Pharmacology, LXIV. Estrogen receptors. Pharmacological Reviews, 58: 773–781.
  6. Davis, B.W., Ostrander, E.A. (2014). Domestic dogs and cancer research: a breed-based genomics approach. ILAR Journal, 55: 59-68. 
  7. Dobson, J.M. (2013). Breed-predispositions to cancer in pedigree dogs, ISRN Veterinary Science, 2013: 941275.
  8. Enginler, S.O., Akis, I., Toydemir, T.S., Oztabak, K., Haktanir, D., Gunduz M.C., Kirsan, I., Firat, I. (2014). Genetic variations of BRCA1 and BRCA2 genes in dogs with mammary tumours. Veterinary Research Communications, 38: 21-27. 
  9. Goebel, K., Merner, N.D. (2017). A monograph proposing the use of canine mammary tumours as a model for the study of hereditary breast cancer susceptibility genes in humans. Journal of Veterinary Medical Science, 3: 51-62. 
  10. Gupta, P., Raghunath, M., Gupta, A.K., Sharma, A., Kour, K. (2014). Clinical study for diagnosis and treatment of canine mammary neoplasms (CMNs) using different modalities. Indian Journal of Animal Research, 48: 45-49.
  11. Jitpean, S., Hagman, R., Strom Holst, B., Hoglund, O.V., Pettersson, A., Egenvall, A. (2012). Breed variations in the incidence of pyometra and mammary tumours in Swedish dogs. Reproduction in Domestic Animals, 47: 347-350. 
  12. Melin, M., Rivera, P., Arendt, M., Elvers, I., Muren, E., Gustafson, U., Starkey, M., et al. (2016). Genome wide analysis identifies germ line risk factors associated with canine mammary tumours. PLoS Genetics, 12: e1006029.
  13. Ostrander, E.A., Franklin, H. (2012). Epstein Lecture. Both ends of the leash–the human links to good dogs with bad genes. New England Journal of Medicine, 367: 636–646.
  14. Park, Y.Y., Kim, K., Kim, S.B., Hennessy, B.T., Kim, S.M., Park, E.S., Lim, J.Y., Li, J., et al. (2012). Reconstruction of nuclear receptor network reveals that NR2E3 is a novel upstream regulator of ESR1 in breast cancer. EMBO Molecular Medicine, 4: 52-67.
  15. Rao, N.A., van Wolferen, M.E., van den Ham R., van Leenen, D., Groot Koerkamp, M.J., et al. (2008). cDNA microarray profiles of canine mammary tumour cell lines reveal deregulated pathways pertaining to their phenotype. Animal Genetics, 39: 333–345.
  16. Rivera, P., von Euler, H. (2011). Molecular biological aspects on canine and human mammary tumors. Veterinary Pathology, 48: 132–146.
  17. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30: 2725-2729
  18. Veena, P., Suresh Kumar, R.V., Raghavender, K.B.P., Srilatha, C.H., Rao, T.S.C. (2014). Immunohistochemical detection of p53 in canine mammary tumors. Indian Journal of Animal Research, 48: 204-206.
  19. Zhang, X., Liu, D., Lv, S., Wang, H., Zhong, X., Liu, B., Wang, B., Liao, J., Li, J., Pfeifer, G.P., Xu, X. (2009). CDK5RAP2 is required for spindle check point function. Cell Cycle, 8: 1206–1216.
  20. Zhao, Z., Wang, L., Xu, W. (2015). IL-13Ralpha2 mediates PNR-induced migration and metastasis in ERalpha-negative breast cancer. Oncogene, 34: 1596-1607. 

Global Footprints