Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 46 issue 1 (march 2012) : 46 - 50


Naicy Thomas*, K. Anilkumar1, A.P. Usha2
1Centre for Advanced Studies in Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Thrissur-680651, Kerala, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Thomas* Naicy, Anilkumar1 K., Usha2 A.P. (2024). STUDY ON THE ASSOCIATION OF THREE MICROSATELLITE DNA MARKERS WITH MILK FAT PERCENTAGE IN CROSSBRED DAIRY CATTLE OF KERALA. Indian Journal of Animal Research. 46(1): 46 - 50. doi: .
The aim of this study was to analyse the genetic variation of three microsatellite DNA loci (ILSTS096, BL41 and BM1508) associated with the milk fat percentage of crossbred dairy cattle of Kerala. The PCR amplified products were detected by denaturing polyacrylamide gel electrophoresis and subsequent autoradiography. Polymorphic information content (PIC), Direct count heterozygosity and unbiased heterozygosity of microsatellites ranged 0.63-0.87, 0.68- 0.88 and 0.69-0.89 respectively. The allelic averages of milk fat percentage of allele 188 and allele 204 of ILSTS096 were significantly lower than those of other alleles of the same locus. A significantly higher milk fat percentage was observed in animals with the allele 198 of ILSTS096 locus, compared to the animals without this allele. Animals with allele 240 and 242 at BL41 locus showed significantly higher and significantly lower milk fat percentage respectively when compared with the animals without these alleles. Animals with the alleles 109 and 113 at BM1508 locus showed a significantly higher milk fat percentage when compared with the animals without these alleles.
  1. Andersson, L., Bohme, J., Rask, L. and Peterson, P.A. (1986). Genomic hybridization of bovine class II major histocompatability genes : Extensive polymorphism of DQá and DQâ genes. Animal Genetics. 17: 95-112.
  2. Biggin, M.D., Gibson, T.J. and Hong, G.F. (1983). Buffer gradient gels and 35 S label as an aid to rapid DNA sequence determination. Proceedings of National Academy Sciences, USA. 80: 3963-3965.
  3. Bishop, M.D., Kappes, S.M., Keele, J.W., Stone, R.T., Sunden, S.L., Hawkins, G.A., Toldo, S.S., Fries, R., Grosz, M.D., Yoo, J. and Beattie, G.W. (1994). A genetic linkage map for cattle. Genetics. 136: 619-639.
  4. Botstein, D., White, R.D., Skolnick, M. and Davis, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer. J. Human Genet.. 32: 314-331.
  5. Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A.T., Sargeant, L.S., Sorensen, A., Steele, M.R., Zhao X., Womack J.E. and Hoeschile, I. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 139: 907-920.
  6. Grosz, M.D., Solinas-Toldo, S., Stone, R.T., Kappes, S.M., Fries, R. and Beattie, C.W.(1997). Chromasomal localization of six bovine microsatellite markers. Animal Genetics. 28: 39-40.
  7. Heyen, D.W., Weller, J.I., Ron, M., Band, M., Beever, J.E., Feldmesser, E., Da, Y., Wiggans, G.R., VanRaden, P.M. and Lewin, H.A. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol. Genomics. 1: 165-175
  8. Ihara, N., Takasuga, A., Mizoshita, K., Takeda, H., Sugimoto, M., Mizoguchi, Y., Hirano, T., Itoh, T., Watanabe, T., Reed, K.M., Snelling, W.M., Kappes, S.M., Beattie, C.W., Bennet, G.L. and Sugimoto, Y. (2004). A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 14: 1987-1998
  9. Kappes, S.M., Keele, J.W., Stone, R.T., McGraw, R.A., Sonstegard, T.S., Smith, T.P., Lopez-Corrales, N.L., and Beattie, C.W. (1997). A second-generation linkage map of the bovine genome. Genome Research. 7: 235–249.
  10. Kemp, S.J., Hishida, A.O., Wambugu, J. Rink, A., Longeri, M.L., Ma, R.Z., Da, Y., Lewin, H.A., Barendse, W. and Teale, A.J. (1995). A panel of polymorphic bovine, ovine and caprine microsatellite markers. Ani. Genet. 26: 299-306.
  11. Ott, J. (1992). Strategies for characterizing highly polymorphic markers in human gene mapping. American Journal of Human Genetics. 51: 283-290.
  12. Pandey, A.K., Tantia, M.S., Kumar, D., Mishra, B., Chaudhary, P. and Vijh, R.K. (2002). Microsatellite analysis of three poultry breeds of India. Asian-Aust. J. Ani. Sci. 15: 1536-1542.
  13. Rodriguez-Zas, S.L., Southey, B.R., Heyen, D.W. and Lewin, H.A. (2002). Detection of a quantitative trait loci influencing dairy traits using a model for longitudinal data. Journal of Dairy Science. 85: 2681-2691.
  14. Snedecor, G.W. and Cochran, W.G. (1985). Statistical Methods. Seventh edition. The Iowa State University Press, USA. p. 313
  15. Stone, R.T., Pulido, J.C., Duyk, G.M., Kappes, S.M., Keele, J.W. and Beattie, C.W. 1995. A small-insert bovine genomic library highly enriched for microsatellite repeat sequence. Mammalian Genome. 6: 714-724.

Editorial Board

View all (0)