Bhartiya Krishi Anusandhan Patrika, volume 39 issue 3-4 (september-december 2024) : 211-214

Gerechte Designs for Agricultural Experimentation

Ashutosh Dalal1,2, Cini Varghese1, Rajender Parsad1, Mohd Harun1,*, B.N. Mandal3, Devendra Kumar1
1ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110 012, India.
2The Graduate School, ICAR-IARI, New Delhi-110 012, India.
3ICAR-Indian Agricultural Research Institute, Jharkhand, India.
  • Submitted30-04-2024|

  • Accepted07-10-2024|

  • First Online 31-12-2024|

  • doi 10.18805/BKAP735

Cite article:- Dalal Ashutosh, Varghese Cini, Parsad Rajender, Harun Mohd, Mandal B.N., Kumar Devendra (2024). Gerechte Designs for Agricultural Experimentation . Bhartiya Krishi Anusandhan Patrika. 39(3): 211-214. doi: 10.18805/BKAP735.

Background: In field trials involving large experimental area, though the row blocking and column blocking are good for capturing differences in two directions, but not for marking out stony patches or other features that tend to clump in compact areas. One can use Gerechte designs (Behrens, 1956) for controlling this extra source of variation. Gerechte designs are generalization of Sudoku squares where v treatments are arranged in p rows and q columns and s regions in such a way that each of the symbols 1, …, n occurs in each row, each column and each region at most once. 

Methods: In this study, some unique methods of construction of Gerechte designs have been discussed. These are mainly complete Gerechte designs.

Result: The obtained Gerechte designs are quite easy to construct and available for a wide parameter range.


  1. Bailey, R.A., Cameron, P.J. and Connelly, R. (2008). Sudoku, Gerechte designs, resolutions, affine space, spreads, reguli and hamming codes. The American Mathematical Monthly. 115(5): 383-404.

  2. Bailey, R.A., Kunert, J. and Martin, R.J. (1990). Some comments on Gerechte designs I. Journal of Agronomy and Crop Science. 165(2-3): 121-130.

  3. Bailey, R.A., Kunert, J. and Martin, R.J. (1991). Some comments on Gerechte designs II. Journal of Agronomy and Crop Science. 166(2): 101-111. 

  4. Behrens, W.U. (1956). Feldversuchsanordnungen mit verbessertem Ausgleich der Bodenunterschiede. Z Landwirtsch Versuchs Untersuchung. 2: 176-193.

  5. Courtiel, J. and Vaughan, E.R. (2011). Gerechete designs with rectangular regions. Discrete Mathematics. 311(20): 2193-2201

  6. Fontana, R. (2014). Random latin squares and sudoku designs generation. Electronics Journal of Statistics. 8(1): 883-893. 

  7. Hui - Dong, M. and Ru -Gen, X. (2008). Sudoku square-a new design in field. Acta Agronomica Sinica. 34(9): 1489-1493.

  8. Kaur, P. and Garg, D.K. (2020). Construction of incomplete Sudoku square and partially balanced incomplete block designs. Communications in Statistics- Theory and Methods. 49(6): 1462-1474. 

  9. Kumar, A., Varghese, C., Varghese, E. and Jaggi, S. (2015). Irregular Sudoku-type designs for animal experiments. Indian Journal of Animal Sciences. 85(9): 1046- 1050.

  10. Kumar, A., Varghese, C., Varghese, E. and Jaggi, S. (2015). On the construction of designs with three-way blocking. Model Assisted Statistics and Applications. 10(1): 43-52.

  11. Sarkar, J. and Sinha, B.K. (2015). Sudoku squares as experimental designs. Resonance. 20(9): 788-802.

  12. Sarkar, J. and Sinha, B.K. (2016). Statistical Aspects of SuDoKu-Based Experimental Designs. Recent Advances in Mathematics, Statistics and Computer Sciences. World Scientific Book. pp 22-28.

  13. Subramani, J. and Ponnuswamy, K.N. (2009). Construction and analysis of sudoku design. Model Assisted Statistics and Applications. 4(4): 287-301.

  14. Vaughan, E.R. (2009). The complexity of constructing gerechte designs. The Electronic Journal of Combinatorics. 16(1). DOI: https://doi.org/10.37236/104.

Editorial Board

View all (0)