Biochemical analysis
Microscopic analysis of starch granules
There was a distinct geographical difference in the shape, size
and abundance of starch granules in the samples collected from Maharashtra and Tamil Nadu (Fig 1).
Protein estimation
Total protein was calculated using the equation from the standard protein graph (Fig 2). Varai from Maharashtra showed lesser total protein content as compared to that from Tamil Nadu (Table 2). Overall Varai has a lower protein content as compared to other millets. (Gopalan, 2011).
Estimation of amylose: amylopectin ratio by determination of Blue Value
Blue Value indicates the amylose to amylopectin ratio, which in turn indicates starch digestibility. Varai illustrated very low Blue Values (Table 3), which indicated presence of higher amounts of amylopectin in its starch, less digestibility of starch, a slower glucose release
and thus a low glycaemic index. Regional variation in Blue Values is observed.
Villas et al., (2019), have concluded in their study that high amylose content makes digestion easier while high amylopectin interferes in the digestion, thus molecular structure has a strong influence on starch digestibility.
Agarose gel electrophoresis of plant genomic DNA
Genomic DNA was extracted and detected by Agarose Gel Electrophoresis (Fig 3).
Polymerase Chain reaction
Samples showed PCR amplicon of desired size of ~599 bp on agarose gel (Fig 4).
DNA sequencing
Source: Chloroplast
Echinochloa frumentacea.
Organism:
Echinochloa frumentacea.
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliopsida; Liliopsida; Poales; Poaceae; PACMAD clade; Panicoideae; Panicodae; Paniceae; Boivinellinae.
Echinochloa.
Following sequences were generated for the sample
>13721 (rbcL) Varai M (Assembled Contig). Sequence was submitted to GenBank. Accession number given by GenBank OR027010;
Base count- 154 a 113 c 133 g 163 t
Origin
1 actaaagcaa gtgttggatt taaagctggt gttaaggatt ataaattgac ttactacact
61 ccggagtacg aaaccaagga tactgatatc ttggcagcat tccgagtaac tcctcagccc
121 ggggttccgc ctgaagaagc aggggctgca gtagctgcgg aatcttctac tggtacatgg
181 acaactgttt ggactgatgg acttaccagt cttgatcgtt acaaaggacg atgctatcac
241 atcgagcccg ttcctgggga ggcagatcaa tatatctgtt atgtagctta tccattagac
301 ctatttgaag agggttctgt tactaacatg tttacttcca ttgtgggtaa cgtatttggt
361 ttcaaagccc tacgcgctct acgtttggag gatctacgaa ttcccattg ttatgcaaaa
421 actttccaag gtccgcctca cggtatccaa gttgaaaggg ataagttgaa caagtatggt
481 cgtcctttat tgggatgtac tattaaacca aaattgggat tatccgcaaa aaattacggt
541 agagcgtgtt atgagtgtct acg
/translation=²TKASVGF KAGVKDYKLTYYTPEY ETKDTDILAAFRVTPQ PGVPPEEAGAAVA AESSTGT WT TVWTDGLTSLDRY KGRCYHIEP VPGEADQYI CY VAY PL DLFEEGSVTNMFTSIVGNVFGFKALRALRLEDLRIPIAYAK TFQGPPHG IQVER DKL NKYGRPLLGCTI KPKLGLSAK NYGRACYECLR²
>13722 Varai T (Assembled Contig). Sequence was submitted to GenBank. Accession number given by GenBank OR027011.
Base count 148 a 111 c 130 g 159 t
Origin
1 ggatttaaag ctggtgttaa ggattataaa ttgacttact acactccgga gtacgaaacc
61 aaggatactg atatcttggc agcattccga gtaactcctc agcccggggt tccgcctgaa
121 gaagcagggg ctgcagtagc tgcggaatct tctactggta catggacaac tgtttggact
181 gatggactta ccagtcttga tcgttacaaa ggacgatgct atcacatcga gcccgttcct
241 ggggaggcag atcaatatat ctgttatgta gcttatccat tagacctatt tgaagagggt
301 tctgttacta acatgtttac ttccattgtg ggtaacgtat ttggtttcaa agccctacgc
361 gctctacgtt tggaggatct acgaattccc attgcttatg caaaaacttt ccaaggtccg
421 cctcacggta tccaagttga aagggataag ttgaacaagt atggtcgtcc tttattggga
481 tgtactatta aaccaaaatt gggattatcc gcaaaaaatt acggtagagc gtgttatgag
541 tgtctacg
/translation=²GFKAGVKDYKLTYYTPEYETKDTDILAAF
RVTPQPGVPPEEAGAAVAAESSTGTWTTVWTDGLTSLDRY KGRCY HIEPVPG EADQYICY VAYPLDLFE EG SVTNMF
TSIVGNVFGFKALRALRLEDLRIPIAYAKTFQGPPHGIQVERDKLN
KYGRPLLGCTIKPKLGLSAKNYGRACYECLR²
In this study, the obtained sequences of Varai varieties were compared with sequences of other millets from NCBI database and phylogenetic tree was obtained (Fig 5). It illustrated that all millets have evolved together, whereas
Amaranthus (Rajgira) has diverged from the millets,
Amaranthus being correctly called as pseudo millet. Both the varieties of Varai were 100% identical when compared with each other. Varai showed distinct evolutionary deviation from
Eleusine coracana (Ragi) (Fig 5).
Gao et al., (2022), based on the results of genetic relationships, divided 10 species of barnyard grass into four groups. The first group comprised
E. oryzicola,
E. crus-galli var.
zelayensis,
E. glabrescens and
E. stagnina; the second group included
E. crus-galli var.
crus-galli and
E. esculenta; the third group contained
E. haploclada alone; and the fourth group consisted of
E. ugandensis,
E. colona and
E. frumentacea. Fig 6 confirms the relatedness of these varieties.
DNA sequencing can help in improving agronomic traits, value addition in food, feed and nutritional security through recombinant technology. It can help in gene manipulation to create drought resistant crops. Thus it can lead the way to sustainable agriculture pertinent to the United Nations Accord of Sustainable Development Goals.