Loading...

Rumen Microbiota and Nutrient Metabolism: A Review

DOI: 10.18805/BKAP486    | Article Id: BKAP486 | Page : 320-327
Citation :- Rumen Microbiota and Nutrient Metabolism: A Review.Bhartiya Krishi Anusandhan Patrika.2022.(37):320-327
Y.K. Kansagara, H.H. Savsani, M.R. Chavda, J.A. Chavda, S.Y. Belim, K.R. Makwana, B.K. Kansagara yashkansagara06.yk@gmail.com
Address : Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh-362 001, Gujarat, India.
Submitted Date : 10-03-2022
Accepted Date : 15-07-2022

Abstract

The rumen consists of a complex ecosystem where nutrients consumed by ruminants are digested by fermentation process, which is executed by diverse microorganisms such as bacteria, protozoa, fungi, bacteriophage and oscillospira. A symbiotic relationship is found among different groups of microorganisms due to the diverse nature of these microbial species and their adaptability and interactions. The ruminant provides necessary environment for the establishment of such microorganisms, while the microorganisms obtain energy from the host animal through microbial fermentation end products. The rumen microbial ecosystem fulfills several functions like fibrolytic, lipolytic and proteolytic functions and produce metabolites including volatile fatty acids (VFA), biohydrogenated lipids, microbial protein, methane etc. The purpose of this review is to contribute a better understanding of the fermentation processes that are taking place in the rumen and to provide information that can be applied for the development of new nutritional strategies to improve the digestion process for achieving maximum production.

Keywords

Biohydrogenated lipid Methane Microbial protein Rumen microbes Rumen Symbiosis VFA

References

  1. Aschenbach, J.R., Penner, G.B., Stumpff, F. and Gabel, G. (2011). Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J. Ani. Sci. 89(4): 1092-1107. https://doi.org/10.2527/jas.2010-3301.
  2. Beam, T.M., Jenkins, T.C., Moate, P.J., Kohn, R.A. and Palmquist, D.L. (2000). Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J. Dairy Sci. 83(11): 2564-2573. https:/ /doi.org/10.3168/jds.S0022-0302(00)75149-6.
  3. Brod, D.L., Bolsen, K.K. and Brent, B.E. (1982). Effect of water temperature in rumen temperature, digestion and rumen fermentation in sheep. J. Ani Sci. 54(1): 179-182. https:/ /doi.org/10.2527/jas1982.541179x.
  4. Brown, M.S., Ponce, C.H. and Pulikanti, R. (2006). Adaptation of beef cattle to high-concentrate diets: Performance and ruminal metabolism. J. Ani Sci. 84(13): 25-33. https:// doi.org/10.2527/2006.8413_supplE25x.
  5. Cherdthong, A., Wanapat, M., Kongmun, P., Pilajun, R. and Khejornsart, P. (2010). Rumen fermentation, microbial protein synthesis and cellulolytic bacterial population of swamp buffalo as affected by roughage to concentrate ration. J. Ani. and Vet. Advances. 9(11): 1667-1675. 
  6. Coleman, G.S. (1983). The cellulolytic activity of 13 species of rumen entodiniomorphid protozoa. J. Protozoology. 30(3): 36-36.
  7. Counotte, G.H.M., Prins, R., Janssen, R.H.A.M. and DeBie, M.J.A. (1981). Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Applied and Environmental Microbiology. 42(4): 649-655. https:/ /doi.org/10.1128/aem.42.4.649-655.1981.
  8. Denman, S.E., Nicholson, M.J., Brookman, J.L., Theodorou, M.K. and McSweeney, C.S. (2008). Detection and monitoring of anaerobic rumen fungi using an ARISA method. Letters in Applied Microbiology. 47(6): 492-499. https://doi.org/ 10.1111/j.1472-765X.2008.02449.x.
  9. Duskova, D. and Marounek, M. (2001). Fermentation of pectin and glucose and activity of pectin degrading enzymes in the rumen bacterium Lachnospira multiparus. Letters in Applied Microbiology. 33(2): 159-163. https://doi.org/ 10.1046/j.1472-765x.2001.00970.x.
  10. Eisler, M.C., Lee, M.R., Tarlton, J.F., Martin, G.B., Beddington, J., Dungait, J.A. and Winter, M. (2014). Agriculture: Steps to sustainable livestock. Nature News. 507(7490): 32-34.
  11. Fondevila, M. and Dehority, B.A. (1996). Interactions between Fibrobacter succinogenes, Prevotella ruminicola and Ruminococcus flavefaciens in the digestion of cellulose from forages. J. Ani. Sci. 74(3): 678-684. https://doi.org/ 10.2527/1996.743678x.
  12. Fuentes, M.C., Calsamiglia, S., Cardozo, P.W. and Vlaeminck, B. (2009). Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy Sci.  92(9): 4456- 4466. https://doi.org/10.3168/jds.2008-1722.
  13. Garnsworthy, P.C., Craigon, J., Hernandez-Medrano, J.H. and Saunders, N. (2012). On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J. Dairy Sci. 95(6): 3166-3180. https://doi.org/ 10.3168/jds.2011-4605.
  14. Grenet, E., Breton, A., Barry, P. and Fonty, G. (1989). Rumen anaerobic fungi and plant substrate colonization as affected by diet composition. Ani. Feed Sci. and Tech. 26(1-2): 55-70. https://doi.org/10.1016/0377-8401(89)90006-0.
  15. Jami, E., Israel, A., Kotser, A. and Mizrahi, I. (2013). Exploring the bovine rumen bacterial community from birth to adulthood.  The International Society for Microbial Ecology Journal.  7(6): 1069-1079.
  16. Jenkins, T.C., Wallace, R.J., Moate, P.J. and Mosley, E.E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Ani. Sci. 86(2): 397-412. https://doi.org/ 10.2527/jas.2007-0588.
  17. Klieve, A.V. and Swain, R.A. (1993). Estimation of ruminal bacteriophage numbers by pulsed-field gel electrophoresis and laser densitometry. Applied and Environmental Microbiology.  59(7): 2299-2303. https://doi.org/10.1128/aem.59.7.2299- 2303.1993.
  18. Krause, K.M. and Oetzel, G.R. (2006). Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Ani. Feed Sci. and Tech. 126(3-4): 215-236. https://doi.org/ 10.1016/j.anifeedsci.2005.08.004.
  19. Liu, Y. and Whitman, W.B. (2008). Metabolic, phylogenetic and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences. 1125(1): 171-189. https://doi.org/10.1196/annals.1419.019.
  20. Lodemann, U. and Martens, H. (2006). Effects of diet and osmotic pressure on Na+ transport and tissue conductance of sheep isolated rumen epithelium. Experimental Physiology. 91(3): 539-550. https://doi.org/10.1113/expphysiol.2005. 032078.
  21. Mohammed, N., Ajisaka, N., Lila, Z.A., Hara, K., Mikuni, K., Hara, K. and Itabashi, H. (2004). Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Ani. Sci. 82(6): 1839-1846. https://doi.org/ 10.2527/2004.8261839x.
  22. Morgavi, D.P., Forano, E., Martin, C. and Newbold, C.J. (2010). Microbial ecosystem and methanogenesis in ruminants.  Animal. 4(7): 1024-1036. https://doi.org/10.1017/S175 1731110000546.
  23. Moss, A.R., Jouany, J.P. and Newbold, J. (2000). Methane production by ruminants: Its contribution to global warming. In Annales de Zootechnie. 49(3): 231-253. https://doi.org/10.1051/ animres:2000119.
  24. Na, Y., Li, D.H. and Lee, S.R. (2017). Effects of dietary forage-to- concentrate ratio on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum). Asian-Australasian Journal of Animal Sciences. 30(7): 967-971. https://dx. doi.org/10.5713%2Fajas.16.0954.
  25. Nagaraja, T.G. and Titgemeyer, E.C. (2007). Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 90: 17-18. https://doi.org/10.3168/ jds.2006-478.
  26. Nam, I.S. and Garnsworthy, P.C. (2007). Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J. Applied Micro. 103(3): 551-556. https://doi.org/10.1111/ j.1365-2672.2007.03317.x.
  27. Nevel, C.J. and Demeyer, D.I. (1996). Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Reproduction Nutrition Development. 36(1): 53-63.
  28. Newbold, T., Hudson, L.N., Hill, S.L., Contu, S., Lysenko, I., Senior, R.A. and Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature. 520(7545): 45-50.
  29. Ozutsumi, Y., Tajima, K., Takenaka, A. and Itabashi, H. (2005). The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries. Bioscience, Biotechnolog and Biochemistry. 69(3): 499-506. https:// doi.org/10.1271/bbb.69.499.
  30. Pitta, D.W., Pinchak, W.E., Dowd, S.E., Osterstock, J., Gontcharova, V., Youn, E. and Malinowski, D.P. (2010). Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microbial Ecology. 59(3): 511-522. link.springer.com/article/10.1007/ s00248-009-9609-6.
  31. Rotz, C.A., Montes, F. and Chianese, D.S. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. J. Dairy Sci.  93(3): 1266-1282. https:/ /doi.org/10.3168/jds.2009-2162.
  32. Russell, J.B., Muck, R.E. and Weimer, P.J. (2009). Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiology Ecology. 67(2): 183-197. https://doi.org/10.1111/j.1574-6941.2008. 00633.x.
  33. Russell, J.B. and Hino, T. (1985). Regulation of lactate production in Streptococcus bovis: A spiraling effect that contributes to rumen acidosis. J. Dairy Sci.  68(7): 1712-1721. https:/ /doi.org/10.3168/jds.S0022-0302(85)81017-1.
  34. Scharen, M., Frahm, J., Kersten, S., Meyer, U., Hummel, J., Breves, G. and Danicke, S. (2018). Interrelations between the rumen microbiota and production, behavioral, rumen fermentation, metabolic and immunological attributes of dairy cows. J. of Dairy Sci. 101(5): 4615-4637. https://doi.org/10.3168/ jds.2017-13736.
  35. Seymour, W.M., Campbell, D.R. and Johnson, Z.B. (2005). Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: A literature study. Animal Feed Science and Technology. 119(1-2): 155-169. https://doi.org/ 10.1016/j.anifeedsci.2004.10.001.
  36. Sinha, S.K., Chaturvedi, V.B., Singh, P., Chaudhary, L.C., Ghosh, M. and Shivani, S. (2017). Effect of high and low roughage total mixed ration diets on rumen metabolites and enzymatic profiles in crossbred cattle and buffaloes. Vet. World. 10(6): 616-622. https://dx.doi.org/10.14202%2Fvetworld. 2017. 616-622.
  37. Verge, X.P.C., Dyer, J.A., Desjardins, R.L., Worth, D. (2007). Greenhouse gas emissions from the Canadian dairy industry in 2001. Agricultural Systems. 94: 683-693. https://doi.org/10.1016/j.agsy.2007.02.008.
  38. Walker, C.B., Redding-Johanson, A.M., Baidoo, E.E., Rajeev, L., He, Z., Hendrickson, E.L. and Stahl, D.A. (2012). Functional responses of methanogenic archaea to syntrophic growth. J. The International Society for Microbial Ecology. 6(11): 2045-2055.https://www.nature.com/articles/ismej201260.
  39. Wanapat, M., Gunun, P., Anantasook, N. and Kang, S. (2014). Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. The Journal of Agricultural Science. 152(4): 675-685. https://doi.org/10.1017/S0021 859613000658.
  40. Wahrmund, J.L., Ronchesel, J.R., Krehbiel, C.R., Goad, C.L., Trost, S.M. and Richards, C.J. (2012). Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. J. Ani. Sci.90(8): 2794-2801. https://doi.org/10.2527/jas.2011-4407.
  41. Williams, A.G. and Coleman, G.S. (1992). Role of Protozoa in the Rumen. In The Rumen Protozoa. Springer, New York, NY. pp. 317-347.
  42. William, A.G. and Coleman, G.S. (1997). The Rumen Protozoa. Springer, The Rumen Microbial Ecosystem. Pp - 73-138. https://doi.org /10.1007/978-94-009-1453-7_3.
  43. Weimer, P.J. (2015). Redundancy, resilience and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Frontiers in Microbiology. 6: 296. https://doi.org/10.3389/fmicb.2015.00296.
  44. Zijderveld, S.M., Fonken, B., Dijkstra, J., Gerrits, W.J.J., Perdok, H.B., Fokkink, W. and Newbold, J.R. (2011). Effects of a combination of feed additives on methane production, diet digestibility and animal performance in lactating dairy cows. J. Dairy Sci. 94(3): 1445-1454. https://doi.org/ 10.3168/jds.2010-3635.
  45. Zhang, Z.W., Wang, Y.L., Chen, Y.Y., Zhang, L.T., Zhang, Y.J., Liu, Y.Q. and Yang, H.J. (2021). The dietary supplemental effect of nitroethanol in comparison with monensin on methane emission, growth performance and carcass characteristics in female lambs. Animals. 11(2): 327. https://doi.org/ 10.3390/ani11020327.

Global Footprints