Bhartiya Krishi Anusandhan Patrika, volume 37 issue 2 (june 2022) : 178-182

Effect of Temperature on the Embryonic Development of Nilgiri Melon Barb Haludaria fasciata

Judine John Chacko, Mini N. Sekharan
1School of Industrial Fisheries, Cochin University of Science and Technology, Kochi-682 016, Kerala, India.
  • Submitted28-02-2022|

  • Accepted30-05-2022|

  • First Online 15-06-2022|

  • doi 10.18805/BKAP475

Cite article:- Chacko John Judine, Sekharan N. Mini (2022). Effect of Temperature on the Embryonic Development of Nilgiri Melon Barb Haludaria fasciata. Bhartiya Krishi Anusandhan Patrika. 37(2): 178-182. doi: 10.18805/BKAP475.
Background: External factors affecting the embryonic development of fishes have importance in aquaculture and conservational studies. The temperature directly affects the development rate and hatching success of fish eggs. An optimum level of temperature is required for each species for the highest hatching rate and proper development. The Nilgiri melon barb Haludaria fasciata is an indigenous ornamental fish of India and this study aims to find the effect of temperature on its embryonic development and find the optimum temperature for hatcheries.
Methods: The H. fasciata were bred in a controlled condition and fertilized eggs were selected for the study. The embryonic development stages were observed under a digital microscope. The eggs were incubated at different temperatures ranging from 10 to 35°C to find their effect on embryonic development on achieving each stage and hatching success.
Result: Among the temperature, the eggs incubated at 35°C have developed and hatched earlier (within 23 hrs 50 min±3 min) than in other treatments. The slowest development and late hatching (within 29 hrs 20 min±14 min) were observed at 20°C. At 26°C, the incubated eggs had a higher hatching rate and higher survival rate (97.68%). Based on the observations, it is suggested fish hatcheries incubate the eggs of H. fasciata at 26°C for attaining better production.

  1. Avakul, P., Jutagate, T. (2015). Effects of water temperature on embryonic development, hatching success and survival of larvae of siamese mud carp (Henicorhynchus siamensis). Asian Fisheries Science. 28: 143-153. DOI: 10.33997/ j.afs.2015.28.4.001.

  2. Chacko, J.J., Sekharan, M.N. (2022). Optimization of disinfectants for controlling fungus growth on the eggs of nilgiri melon barb (Haludaria fasciata) during incubation. Fishery Technology. 59: 79-87.

  3. Daniels, R.J. (2002). Freshwater Fishes of Peninsular India (Madhav Gadgil (ed) India-A lifescape 2). Universities Press. pp. 224.

  4. Das, T., Pal, A.K., Chakraborty, S.K., Manush, S.M., Dalvi, R.S., Sarma, K. and Mukherjee, S.C. (2006). Thermal dependence of embryonic development and hatching rate in Labeo rohita (Hamilton, 1822). Aquaculture. 255(1): 536-541. https://doi.org/10.1016/j.aquaculture.2006.01.013.

  5. Florez, F. (1972). The effect of temperature on incubation time, growth and lethality of embryos, larvae and juveniles of the ide, Idus idus (L.). Inst. Fresw. Res. Drottingholm. 52: 50-64.

  6. George, A.E., Chapman, D.C. (2013). Aspects of embryonic and larval development in bighead carp hypophthalmichthys nobilis and silver carp hypophthalmichthys molitrix. PLoS ONE. 8(8): e73829. DOI: 10.1371/journal.pone.0073829.

  7. George, A.E., Chapman, D.C. (2015). Embryonic and larval development and early behavior in grass carp, Ctenopharyngodon idella: Implications for recruitment in rivers. PLOS ONE. 10(3): e0119023. DOI: 10.1371/journal.pone.0119023.

  8. Herzig, A., Winkler, H. (1986). The influence of temperature on the embryonic development of three cyprinid fishes, Abramis brama, Chalcalburnus chalcoides mento and Vimba vimba. Journal of Fish Biology. 28(2): 171-181. DOI: 10.1111/ j.1095-8649.1986.tb05155.x.

  9. Hubbs, C., Bryan, C. (1974). Effect of Parental Temperature Experience on Thermal Tolerance of Eggs of Menidia audens. In: The Early Life History of Fish. [Blaxter, J.H.S. (eds)]. Springer, Berlin, Heidelberg. pp. 431-435. DOI: 10.1007/ 978-3-642-65852-5_35.

  10. Iglesias, J., Rodríguez-Ojea, G. and Peleteiro, J.B. (1995). Effect of light and temperature on the development of turbot eggs (Scophthalmus maximus L.). ICES Marine Science Symposia. 201: 40-44. http://hdl.handle.net/10508/6811.

  11. Jayaram, K.C. (2010). The Freshwater Fishes of the Indian Region (Rev. 2nd ed). Narendra Pub. House. https://agris.fao.org/ agris-search/search.do?recordID=US201300159462.

  12. Kokurewicz, B. (1970). The effect of temperature on embryonic development of Tinca tinca (L.) and Rutilus rutilus (L.). Zool. Pol. 20(3): 317-337.

  13. Korwin-Kossakowski, M. (2008). The influence of temperature during the embryonic period on larval growth and development in carp, Cyprinus carpio L. and grass carp, Ctenopharyngodon Idella (Val.): Theoretical and Practical Aspects. Archives of Polish Fisheries. 16(3): 231-314. DOI: 10.2478/s10086 -008-0020-6.

  14. Kupren, K., Mamcarz, A., Kucharczyk, D. (2011). Effect of variable and constant thermal conditions on embryonic and early larval development of fish from the genus Leuciscus (Cyprinidae, Teleostei). Czech Journal of Animal Science. 56(2): 70-80. DOI: 10.17221/312/2009-CJAS.

  15. Mills, C.A. (1980). Spawning and rearing eggs of the dace Leuciscus leuciscus (L.). Aquaculture Research. 11(2): 67-72. DOI: 10.1111/j.1365-2109.1980.tb00284.x.


  16. Nissling, A., Johansson, U., Jacobsson, M. (2006). Effects of salinity and temperature conditions on the reproductive success of turbot (Scophthalmus maximus) in the Baltic Sea. Fisheries Research. 80(2-3): 230-238. DOI: 10.1016/ j.fishres.2006.04.005.

  17. Nwosu, B.F.M., Holzlohner, S. (2000). Influence of temperature on egg hatching, growth and survival of larvae of Heterobranchus longifilis Val. 1840 (Teleostei: Clariidae). Journal of Applied Ichthyology. 16(1): 20-23. DOI: 10.1046/j.1439-0426. 2000.00144.x.

  18. Pethiyagoda, R. (2013). Haludaria, a replacement generic name for Dravidia (Teleostei: Cyprinidae). Zootaxa. 3646(2): 199-199. DOI: 10.11646/zootaxa.3646.2.9.

  19. Polat, H., Ozen, M.R., Yavuz Keskin, S. (2018). The embryonic development of black sea turbot (Psetta maxima Linnaeus, 1758) eggs in different incubation temperatures and salinities. Turkish Journal of Fisheries and Aquatic Sciences. 18(3): 475-482. DOI: 10.4194/1303-2712-v18_3_13.

  20. Sapkale, P.H., Singh, R.K., Desai, A.S. (2011). Optimal water temperature and pH for development of eggs and growth of spawn of common carp (Cyprinus carpio). Journal of Applied Animal Research. 39(4): 339-345. DOI: 10.1080/ 09712119.2011.620269.

  21. Schnurr, M.E., Yin, Y., Scott, G.R. (2014). Temperature during embryonic development has persistent effects on metabolic enzymes in the muscle of zebrafish. Journal of Experimental Biology. 217(8): 1370-1380. DOI: 10.1242/jeb.094037.

  22. Sekharan, M. (2006). Prospects of marketing the indigenous ornamental fishes of Kerala. Cochin University of Science and Technology, Kochi, Kerala, India. Ph.D. Thesis. pp  230.

  23. Thépot, V., Jerry, D.R. (2015). The effect of temperature on the embryonic development of barramundi, the Australian strain of Lates calcarifer (Bloch) using current hatchery practices. Aquaculture Reports. 2: 132-138. DOI: 10.1016/ j.aqrep.2015.09.002.

  24. Woynarovich, E., Horvath, L. (1980). The artificial propagation of warm-water finfishes: A manual for extension. FAO Fisheries Technical Paper, No. 201. pp. 183 http://www.fao.org/3/ AC742E/AC742E00.htm#TOC.

  25. Zhang, Q., Kopp, M., Babiak, I., Fernandes, J.M.O. (2018). Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide. Scientific Reports. 8(1): 41-42. DOI: 10.1038/s41598-018-22288-8.

Editorial Board

View all (0)