- Banerjee, R., Das, P., Ahmad, T. and Kumar, M. (2021). Modeling and forecasting of agricultural commodity production under changing climatic condition: A review. Bhartiya Krishi Anusandhan Patrika. 36(4): 273-279.
- Box, G.E.P. and Jenkins, G.M. (1970). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, CA.
- Clements, M.P. and Smith, J. (1997). The performance of alternative forecasting methods for SETAR models. International Journal of Forecasting. 13(4): 463-475.
- Choudhary, K., Jha, G.K. and Kumar, R.R. (2019). Delhi Potato price analysis using ensemble empirical mode decomposition. Bharatiya Krishi Anusandhan Patrika. 34(1): 33-37.
- Choudhury, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019). Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian Journal of Agricultural Sciences. 89(5): 882-886.
- Darbellay, G.A. and Slama, M. (2000). Forecasting the short-term demand for electricity: Do neural networks stand a better chance? International Journal of Forecasting. 16(1): 71-83.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M. C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 454: 903-995.
- Jha, Girish, K. and Sinha, K. (2013). Agricultural price forecasting using neural network model: An innovative information delivery system. Agricultural Economics Research Review. 26(2): 229-239.
- Nelson, M., Hill, T., Remus, W. and O’Connor, M. (1999). Time series forecasting using neural networks: Should the data be deseasonalized first?. Journal of Forecasting. 18(5): 359-367.
- Kumar, R.R., Jha, G.K., Choudhary, K. and Budhlakoti, N. (2019). Examining integration between Agra and Delhi potato markets. Bhartiya Krishi Anusandhan Patrika. 34(1): 62-64.
- Zhang, X., Lai, K.K. and Wang, S.Y. (2008). A new approach for crude oil price analysis based on empirical mode decomposition. Energy Economics. 30(3): 905-918.
- Zhang, J.L., Zhang, Y.J. and Zhang, L. (2015). A novel hybrid method for crude oil price forecasting. Energy Economics. 49: 649-659.
- Zhu, B. (2012). A novel multiscale ensemble carbon price prediction model integrating empirical mode decomposition, genetic algorithm and artificial neural network. Energies. 5(2): 355-370.
Submitted Date : 18-01-2022
Accepted Date : 11-05-2022
First Online: