- An, X., Jiang, D., Zhao, M. and Liu, C. (2012). Short time prediction of wind power using EMD and chaotic theory. Communication in Nonlinear Science and Numerical Simulation. 17(2): 1036-1042.
- Anjaly, K.N., Surendran, S., Babu, S.K. and Thomas, J.K. (2010). Impact Assessment of Price Forecast: A Study of Cardamom Price Forecast by AMIC, KAU. NAIP on Establishing and Networking of Agricultural Market Intelligence Centres in India. College of Horticulture, Vellanikkara. 31.
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics. 31: 307-327.
- Brandl, B., Wildburger, U. and Pickl, S. (2009). Increasing of the fitness of fundamental exchange rate forecast models. International Journal of Contemporary Mathematical Sciences. 4(16): 779-798.
- Brock, W.A., Scheinkman, J.A., Dechert, W.D. and LeBaron, B. (1996). A test for independence based on the correlation dimension. Econometric Reviews. 15: 197-235.
- Chen, C.F., Lai, M. and Yeh, C.C. (2012). Forecasting tourism demand based on empirical mode decomposition. Knowledge-Based Systems. 26: 281-287.
- Chen, S.Y. (2007). Forecasting exchange rates: A new nonparametric support vector regression. The Journal of Quantitative and Technical Economics. 5: 142-150.
- Das, P., Jha, G.K., Lama, A., Parsad, R. and Mishra, D. (2020). Empirical Mode Decomposition based Support Vector Regression for Agricultural Price Forecasting. Indian Journal of Extension Education. 56 (2): 7-12. (http://krishi.icar.gov.in/ jspui/handle/123456789/44138).
- Das, P., Lama, A. and Jha, G.K. (2021). R Package EMDSV Rhybrid. (http://krishi.icar.gov.in/jspui/ handle/123456789/44898).
- Duan, W.Q. and Stanley, H.E. (2011). Cross-correlation and predictability of financial return series. Physica A. 390(2): 290-296.
- Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica. 50: 987-1008.
- Guo, Z., Zhao, W., Lu, H. and Wang, J. (2012). Multi- step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy. 37(1): 241-249.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceeding of the Royal Society London A. 454: 909-995.
- Ince, H. and Trafalis, T. (2006). A hybrid model for exchange rate prediction. Decision Support Systems. 42(2): 1054-1062.
- Lama, A., Jha, G., Gurung, B., Paul, R.K., Bharadwaj, A. and Parsad, R. (2016). A Comparative Study on Time-delay Neural Network and GARCH Models for Forecasting Agricultural Commodity Price Volatility. Journal of the Indian Society of Agricultural Statistics. 70(1): 7-18.
- Lu, C.J., Lee, T.S. and Chiu, C.C. (2009). Financial time series forecasting using independent component analysis and support vector machine. Decision Support Systems. 47(2): 115-125.
- Sugiyama, M. and Kawanabe, M. (2012). Machine Learning in Non-Stationary Environments- Introduction to Covariate Shift Adaptation. The MIT Press, Cambridge, Massachusetts, London, England. 2nd ed.
- Suykens, J.A.K. and Vandewalle, J. (1999). Least squares support vector machine classifier. Neural Processing Letters. 9(3): 293-300.
- Vladimir, N. Vapnik. (1998). Statistical Learning Theory. Wiley-Interscience. 1st ed.
- Zhang, G.P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing. 50: 159-175.
Submitted Date : 13-10-2021
Accepted Date : 22-03-2022
First Online: