Rumen microbiology and molecular techniques importance in the ruminant nutrition : A review

Article Id: BKAP30 | Page : 125-132
Citation :- Rumen microbiology and molecular techniques importance in the ruminant nutrition : A review .Bhartiya Krishi Anusandhan Patrika.2017.(32):125-132

Amar Singh Meena, A. Sahoo, Pankaj Kumar Kumawat and Satish Kumar 

Address :

ICAR-Central Sheep and Wool Research Institute, Avikanagar, Malpura-304501 (Rajasthan) India 

Abstract

Availability of energy in the ruminant livestocks depends on the types of food and rumen fermentation process efficiency. Forage/fodder digestions in ruminant livestocks are nearly half of what have been taken in feeding interval, because the green or dry forage/fodder digestion is not much efficient due to poor rumen fermentation process in mostly ruminants. Rumen microorganism has wide genus and species level bio-diversity which depend on the availability of forage/fodder.  Rumen microorganisms are living in anaerobic environment condition and most of them are unculturable in the laboratory. Very few rumen microorganisms have been isolated and cultivated in the laboratory. This review highlights the diversity and important function of the rumen micro biota. Rumen micro biota availability and activity is affected by diet composition in ruminant livestocks and wild animals. In the future, there is lot of scope for the improvement of rumen fermentation. Through modification of rumen micro-biota population activity can increase livestock’s productivity by               conserving the natural resources.
 

Keywords

Molecular techniques Rumen microbiology and Ruminant nutrition

References

  1. Allison MJ, Mayberry WR, McSweeney CS and Stahl DA (1992). Synergistes jonesii, gen sp nov: A rumen bacterium that degrades toxic pyridinediols. Syst. Appl. Microbiol., 15: 522-529.
  2. Anonymous (2017). ICAR-CSWRI Annual report and Progress report of VTC-RM project (2012-13, 2013-14 and 2014-15). 
  3. Bach SJ, Mcallister TA, Veira DM, Gannon VPJ and Holley RA (2002). Transmission and control of Escherichia coli O157:H7-A review. Can. J. Anim. Sci, 82: 475-490.
  4. Gregg KB, Hamdolf K, Henderson J, Kopecny and Wong C (1998). Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning. Appl. Environ. Microbiol, 64: 3496-3498.
  5. Gregg KCL, Cooper DJ, Schaefer H, Sharpe CE, Beard G, Allen and J Xu (1994). Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium. Bio/Technol. 12: 1361-1365.
  6. Hammond AD, Allison MJ Williams GM, Prine GM and Bates DB (1989). Prevention of leucaena toxicity of cattle in Florida by ruminal inoculation with 3hydroxy-4 (1H) - pyridine degrading bacteria. Am. J. Vet. Res., 50: 2176-2180. 
  7. Jones RJ and Megarrity RG (1986). Successful transfer of dihydroxypyridine-degrading bacteria from Hawaiian (USA) goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J., 63: 259-262. 
  8. Kamra DN, (2005). Rumen microbial ecosystem. Current Science, 89(1): 124-135.
  9. Klieve AV and Swain RA (1993). Estimating ruminal bacteriophage numbers using pulsed field gel electrophoresis and laser densitometry. Appl. Environ. Microbiol, 59:2299-2303.
  10. Klieve AV, Heck GL, Prance MA and Shu Q (1999). Genetic homogeneity and phage susceptibility of ruminal strains of Streptococus bovis isolated in Australia. Lett. Appl. Microbiol, 29: 108-112.
  11. Kobayashi Y (2003). Recombinant rumen bacteria: problems and opportunities. Nutr. Abst. Rev. (Series B), 73: 51-59.
  12. Kobayashi Y and Yamamoto M (2002). Factors that limit maintenance of recombinant rumen bacterium in sheep rumen. Anim. Sci. J., 73: 131-136.
  13. Kobayashi Y, Forster RJ and Teather RM (2000). Development of a competitive polymerase chain reaction assay for the ruminal bacterium Butyrivibrio fibrisolvens OB156 and its use for tracking an OB156-derived recombinant. FEMS Microbiol. Lett, 188: 185-190.
  14. Kobayashi Y, Yamada M and Yamamoto M (2001). Survival of a recombinant rumen bacterium in the rumen of sheep. Anim. Sci. J., 72: 344-346.
  15. Kumar A, Kamra DN, Agarwal N, Rikhari K and Chaudhary L C (2013). Phenotypic and phylogenetic characterization of cellulose degrading bacteria isolated from rumen of buffalo. Animal Nutrition and Feed Technology, 13: 271-279.
  16. Kumawat PK, Meena AS, Soren NM and Sahoo A. (2014). Isolation and identification of lactic acid bacteria in the feces of sheep. Proceeding of Global Animal Nutrition Conference 20-22 April 2014 at Bangalore organized by Animal Nutrition Society of India in Glance-2014.NFF-28.
  17. Meena AS, Kumawat PK, Soren NM and Sahoo A. (2014). Isolation and identification of lactic acid bacteria in the feces of peacock. Proceeding of Global Animal Nutrition Conference 20-22 April 2014 at Bangalore organized by Animal Nutrition Society of India in Glance-2014.NFF-29.
  18. Nelson KE, Thonney ML, Woolston TK, Zinder SH and Pell AN (1998). Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria. Appl. Environ. Microbiol, 64: 3824-3830.
  19. Sly LI, Cahill MM, Osawa R and Fujisawa (1997). The tannin degrading species Streptococcus gallilyticus and Streptococcus caprinus are subjective synonyms. Int. J. System. Bacteriol, 47: 893-894. 
  20. Tajima K, Aminov RI, Nagamine T, matsui H, Nakamura M and Benno Y (2001). Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol, 67: 2766-2774.
  21. Wallace RJ. (1992). Rumen microbiology, biotechnology and ruminants nutrition: the application of research findings to a complex microbial ecosystem. FEMS Microbiol. Lett, 100: 529-534. 
  22. Wiryawan KG, Tangendjaja B and Suryahadi Brooker JD, (1999). Rumen degrading bacteria from Indonesian ruminants. In Tannins in Livestock and Human Nutrition. Proc International Workshop, Adelaide, Austrialia, 31 May-2 June pp146-150.

Global Footprints