Bioinformatics in disease research: Brief introduction

DOI: 10.18805/BKAP248    | Article Id: BKAP248 | Page : 253-256
Citation :- Bioinformatics in disease research: Brief introduction.Bhartiya Krishi Anusandhan Patrika.2020.(35):253-256
Ratna Prabha, Rajni Kumari, D.P. Singh, Anil Rai, Sanjay Kumar ratna.prabha@icar.gov.in
Address : ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110 012, Delhi, India.
Submitted Date : 27-10-2020
Accepted Date : 28-11-2020


Bioinformatics is a newly emerging discipline playing important role in all biological disciplines including disease research. Bioinformatics tools and techniques are continuously applied in research of infectious diseases. Bioinformatics is assisting in Pathogen identification and typing, identification of pathogenicity and virulence along with detecting and combating antimicrobial resistance. With the use of bioinformatics, many different bacterial and viral pathogens are detected from clinical samples. In this article, we are giving a brief overview about the use and importance of bioinformatics in research of disease biology. 


Bioinformatics Pathogen Identification Disease Research


  1. Saeb, A.T., Abouelhoda, M., Selvaraju, M., Althawadi, S., Mutabagani, M., Adil, M., Hokail, A.A., Tayeb, H.T. (2017). The Use of Next-Generation Sequencing in the Identification of a Fastidious Pathogen: A Lesson From a Clinical Setup. Evol Bioinform Online. 12:1176934316686072. 
  2. Armstrong, S.D., Xia, D., Bah, G.S., Krishna, R., Ngangyung, H. F., LaCourse, E. J., et al. (2016). Stage-specific proteomes from Onchocerca ochengi, sister species of the human river blindness parasite, uncover adaptations to a nodular lifestyle. Mol. Cell. Proteom. 15:2554–2575. 
  3. Bennuru, S., O’Connell, E.M., Drame, P.M.,Nutman, T.B. (2017). Mining filarial genomes for diagnostic and therapeutic targets. Trends Parasitol. 34:80–90. 
  4. Berry, I.M., Melendrez, M.C., Bishop-Lilly, K.A., Rutvisuttinunt, W., Pollett, S., Talundzic, E., Morton, L., Jarman, R.G. (2020). Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J Infect Dis. 221(Supplement_3):S292-S307. 
  5. Carriço, J.A., Sabat, A.J., Friedrich, A.W., Ramirez, M. (2013). ESCMID Study Group for Epidemiological Markers (ESGEM). Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution. Euro Surveill. 18(4):20382. 
  6. Cotton, J.A., Bennuru, S., Grote, A., Harsha, B., Tracey, A., Beech, R., et al. (2016). The genome of Onchocerca volvulus, agent of river blindness. Nat. Microbiol. 2:16216. 
  7. de Carvalho, C.X., Cardoso, C.C., de Souza Kehdy, F., Pacheco, A.G., Moraes, M. O. (2017). Host genetics and dengue fever. Infect. Genet. Evol. 56:99–110. 
  8. Desjardins, C.A., Cerqueira, G.C., Goldberg, J.M., Dunning Hotopp, J.C., Haas, B.J., Zucker, J., et al. (2013). Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nat. Genet. 45:495–500. 
  9. Hogeweg, P. The roots of bioinformatics in theoretical biology. PLoS Comput Biol. 7(3):e1002021. 
  10. Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41(1): e1.
  11. Kwiatkowski, D. (2015). Malaria genomics: tracking a diverse and evolving parasite population. Int. Health 7:82–84. 
  12. Kuroda, M., Sekizuka, T., Shinya, F., Takeuchi, F., Kanno, T., Sata, T., Asano, S. (2012). Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing. J Clin Microbiol. 50(5):1810-2. 
  13. Malaria Genomic Epidemiology Network. (2015). A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526:253–257. 
  14. Wilson, M.R., Naccache, S.N, Samayoa, E., Biagtan, M., Bashir, H., Yu, G., Salamat, S.M., Somasekar, S., Federman, S., Miller, S., Sokolic, R., Garabedian, E., Candotti, F., Buckley, R.H., Reed, K.D., Meyer, T.L., Seroogy, C.M., Galloway, R., Henderson, S.L., Gern, J.E., DeRisi, J.L., Chiu, C.Y. (2014). Actionable diagnosis of neurolepto- spirosis by next-generation sequencing. N Engl J Med. 370(25):2408-17.
  15. Saeb, A. T. M. (2018). Current Bioinformatics resources in combating infectious diseases. Bioinformation. 14(1): 31–35.
  16. Petty, T.J., Cordey, S., Padioleau, I., Docquier, M., Turin, L., Preynat-Seauve, O., Zdobnov, E.M., Kaiser, L. (2014). Comprehensive human virus screening using high-throughput sequencing with a user-friendly representation of bioinformatics analysis: a pilot study. J Clin Microbiol.52(9):3351-61. 
  17. Weinstock, G.M. (2012). Genomic approaches to studying the human microbiota. Nature. 489 (7415) : 250–256.
  18. WHO. (2017). WHO Dengue and Severe Dengue. Geneva: World Health Organization.
  19. World Health Organization Western Pacific Region. (2018). Dengue Situation Update Number 500: Update on the Dengue situation in the Western Pacific Region (Northern Hemisphere)., (500), pp. 1–5".
  20. Xia, X. (2017). Bioinformatics and drug discovery. Curr. Top. Med. Chem. 17:1709–1726.
  21. Yan, S.-K., Liu, R.-H., Jin, H.-Z., Liu, X.-R., Ye, J., Shan, L., et al. (2015). ‘Omics’ in pharmaceutical research: overview, applications challenges, and future perspectives. Chin. J. Nat. Med. 13:3–21.

Global Footprints