Effect of drought stress on crop physiology: A mini-review

DOI: 10.18805/BKAP245    | Article Id: BKAP245 | Page : 236-240
Citation :- Effect of drought stress on crop physiology: A mini-review.Bhartiya Krishi Anusandhan Patrika.2020.(35):236-240
Pradip Kumar Saini pradipksaini@gmail.com
Address : Department of Crop Physiology, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya-224 229, Uttar Pradesh, India.
Submitted Date : 10-10-2020
Accepted Date : 28-11-2020

Abstract

Global climate change, in the form of increasing temperature and fluctuating soil moisture conditions including drought stress, is projected to decrease the crop physiology of food crops over the next 50 years. Drought stress is an effect of considered as the lowering in the rate of respiration or decrease in the level of photosynthesis.  This mini-review tells us the latest information about the drought stress and its effect on the growth of the plant with relation to photosynthesis and water and the mechanism of adaptation. There are numerous ways of the mechanism of adaptation that allows the plant to tolerate the drought stress condition.  This mini-review we can prove the statement of different authors on the tolerance of drought stress and the slight changes in the environmental conditions may lead to the fast flexibility of the cell metabolism is the first and main step in the avoidance of drought stress.

Keywords

Drought stress Plant growth Photosynthesis

References

  1. Aro, E.M., Virgin, I., Andersson, B., Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochem. Biophys. Acta. (1993).    1143: 113-134.
  2. Baker, N.R., Horton P. Chlorophyll fluorescence quenching during photoinhibition. In: D.J. Kyle, C. B. Osmond and C. J. Arntzen (Eds.). 1987, 85-94.
  3. Bhadula, S.K., Yang, G.P., Sterzinger, A., Ristic, Z. Synthesis of a family of 45 kd heat shock proteins in a drought and heat resistant line of maize under controlled and field conditions. J. Plant Physiol. 1998; 152:104-111. 
  4. Blake, T.J., Bevilacqua, E., Zwiazek, J.J., Effects of repeated stress on turgor pressure and cell elasticity changes in black spruce seedlings. Can. J For. Res. 1991; 21:1329-1333.
  5. Blum, A. Crop responses to drought and the interpretation of adaptation. Plant Growt0h Regul. 1996; 20:135-148. 
  6. Bray, E.A., Bailey-Serres, J., Weretilnyk, E. Responses to abiotic stresses. In: W. Gruissem, B. Buchnnan and R. Jones (Eds.). 2000, 1158-1249. 
  7. Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 1997; 2:48-54. 
  8. Chaves, M. Effects of water deficits of carbon assimilation. J. Exp. Bot. 1991; 42:1-16. 
  9. Cornic, G., Ghashghaie, J., Genty, B., Briantais, J.M. Leaf photosynthesis is resistant to a mild drought stress. Photosynthetica. 1992; 27: 295-309. 
  10. Cornic, G.. Drought stress and high light effects on leaf photosynthesis. In: [N.R. Baker, J.R. Boyer (Eds.)], 1994, 297-313. 
  11. Gilmore, A.M., Björkman, O. Temperature sensitive coupling and uncoupling of ATPase-mediated, nonradiative energy dissipation: Similarities between chloroplasts and leaves. Planta. 1995; 197:646-654. 
  12. Hamblin, A., Tennant, D., Perry, W. The cost of stress: Dry matter partitioning changes with seasonal supply of water and nitrogen to dryland wheat. Plant Soil. 1991; 122:47-58. 
  13. Hanson, A.D. Interpreting the metabolic responses of plants to water stress. Hort. Sci. 1980; 15: 623-629. 
  14. Heidaiy, Y. and Moaveni, p. (2009). Study of Drought stress on accumulation and proline among aba in different genotypes forage corn .Research journal of biological sciences. 4: 1121-1124.
  15. Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in alfalfa (Medicago sativa) plants. Physiol. Plant. 1992; 84:55-60. 
  16. Jones, H.G., Corlett, J.E. Current topics in drought physiology. J Agr. Sci. 1992; 119:291-296. 
  17. Lawlor, D.W. Limitation of photosynthesis in water-stressed leaves. Stomatal metabolism and the role of ATP. Ann. Bot. 2002; 89:871-885. 
  18. Levitt, J. Stress terminology. In: [N.C. Turnerand P. J. Kramer (Eds.)]. Adaptation of plants to water and high temperature stress. Wiley-Interscience. New York, 1982, 437-439. 
  19. Lichtenthaler, H.K. Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol. 1996; 148:4-14. 
  20. Ludlow, M.M., Muchow, R.C. A critical evaluation of traits for improving crop yields in water-limited environment. Adv. Agron. 1990; 43: 107-153. 
  21. Maury, P., Berger, M., Mojayad, F., Planchon, C. Leaf water characteristics and drought acclimation in sunflower genotypes. Plant Soil. 2000; 223: 153-160.
  22. Munns, R. Why measure osmotic adjustment? Aust. J. Plant Physiol. 1988; 15:717-726.
  23. Navari-Izzo F., Quartacci, M.F., Izzo, R. Water-stress induced changes in protein and free amino acids in field-grown maize and sunflower. Plant Physiol. Biochem. 1990; 28:531-537. 
  24. Poorter, H., Remkes, C. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia. 1990; 83: 553-559. 
  25. Ramos, M.L.G., Gordon, A.J., Minchin, F.R., Sprent, J.J., Parsons, R. Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann. Bot. 1999; 83:57-63. 
  26. Sajedi, N. and Sajedi. AS. (2008), Effect of drought stress on physiological characteristics of maize mycorrhiza and zinc. Journal of Crop Science. Volume 11, No. 3, p. 202 to 222.
  27. Shackel, K., Foster, K., Hall, A. Genotypic differences in leaf osmotic potential among grain sorghum cultivars grown under irrigation and drought. Crop Sci. 1982; 22:1121-1125. 
  28. Shinozaki, K., Yamaguchi-Shinogzaki, K. Gene expression and signal transduction in water-stress response. Plant Physiol. 1997; 115: 327-334. 
  29. Tezara, W., Mitchell, V.J., Driscoll, S.D., Lawlor, D.W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 1999; 401:914-917. 
  30. Tuba, Z., Lichtenthaler, H.K., Csintalan, Z., Nagy, Z, Szente K. Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiol. Plant. 1996; 96: 83-388. 
  31. Turner, N.C. Adaptation to water deficits: a changing perspective. Aust. J. Plant Physiol. 1986; 13:1 75-189. 
  32. Valladares, F., Gianoli, E., Gómez, J.M. Ecological limits to plant phenotypic plasticity. New Phytol. 2007; 176:749-763. 
  33. Vassilev, A., Manolov, P. Chlorophyll fluorescence of barley (H. vulgare L.) seedlings grown in excess of Cd. Bulg. J. Plant Physiol. 1999; 25: 67-76. 
  34. Von Caemmerer, S., Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta. 1981; 153:376-387. 
  35. White, D.A., Turner, N.C., Galbraith, J.H. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol. 2000; 20: 1157-1165. 
  36. Wise, R.R., Ortiz-Lopez, A., Ort, D.R. Spatial distribution of photosynthesis during drought in field-grown and chamber grown acclimated and nonacclimated cotton. Plant Physiol. 1992; 100:26-36. 
  37. Yordanov, I., Velikova, V., Tsonev, T. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. Special Issue. 2003, 187-206. 
  38. Zlatev, Z. Effects of water stress on leaf water relations of young bean plants. J. Central Europ. Agric. 2005; 6(1):5-14. 

Global Footprints