The work was carried out in the Agricultural and Food Engineering Department, IIT Kharagpur, West Bengal during the year 2017-2018.
Various instruments used for experimentations and measurements include Vernier calipers-for measuring girth area of seedlings and various dimensions of different components of the machine, stopwatch-for measuring the speed of operation, scales-for measuring height of seedlings
etc, load cell with indicator-for measuring the force required to pull the machine and measuring tape.
The following methods were used for determining different parameters.
Procedure for deciding link length
(a) A four-bar mechanism was selected for movement of various linkages. For deciding link length, Grashoff’s law was primarily introduced which states that the sum of shortest link and longest link should be less than equal to the sum of remaining links. By keeping one link fixed, the other link lengths were decided on a trial and error basis which should follow the different path while picking the seedlings from the tray and while returning. The finger which is the extension of the coupler should follow a path as shown in Fig 1.
b) Determination of base area of seedlings
The picking finger can be designed based on the area of girth of the seedling where the finger should hold before planting into the puddled soil.
Fig 2 shows location of the seedling to be held at section AA’ by the transplanter finger. The cross section at AA’ is approximated to an ellipse with major axis ‘a’ and minor axis ‘b’ (Choudhury, 1983). The representation of major and minor axes is shown in Fig 3.
The area of cross section can be calculated by using the relationship:
A = π × a × b
Where,
A = Cross sectional area of the seedling.
a = Major axis.
b = Minor axis.
c) Size of finger opening
The size of finger opening is determined by using the relationship
The average number of seedlings per hill can be considered to be 5
(Wang et al., 2010).
Average area of cross section of seedlings = 12.24 mm
2 (Table 2).
Packing factor = 0.7 (Assumed)
Therefore, required size of finger opening =
The area of opening of the finger is approximately square in shape. Therefore, Dimension of square = 9.35 mm ~ 10 mm. Say, a 10 mm × 10 mm area was chosen.
d) Hill to hill spacing
This depends on the skill of operator. The operator should maintain constant speed of crank rotation in order to obtain uniform spacing. Higher speed of crank rotation will decrease hill to hill spacing and vice-versa. However, row to row spacing was fixed at 20 cm apart.
e) Planting mechanism
A 2-dimensional four bar linkage mechanism is used for the planting mechanism. Transplanting finger is attached at the extension of the coupler link. Kinematic diagram of the planting mechanism is shown in Fig 4.
f) Seedling tray
The seedling tray was fabricated using GI sheet of size 20×30 cm. A slot of size 20 mm width was opened for easy passage of seedling during picking. A slot of 8 mm width was provided for passage of seedling pusher or star wheel. Design of seedling tray is shown in Fig 5.
g) Handle
The handle used was of MS hollow pipe having a diameter 15 mm. The length of handle was 98 cm and was inclined at 63° from horizontal.
h) Frame
Frame was fabricated using MS angle of 20×20×3 mm. All the other elements including float, handle, linkages, seedling tray and cage wheel and star wheel mechanism are attached to frame.
i) Lugged wheel and star-wheel mechanism
A lugged wheel and star-wheel mechanism were designed to act as a seedling pusher. The lugged wheel gets power from the ground contact while traveling. On the same shaft, a star wheel is fixed. Hence when the lugged wheel gets rotated, the star wheel also rotates in the same direction in the direction of travel. Thus, the gap in between the teeth of the star wheel pulls down the seedlings up to the finger reach. A photograph of the lugged wheel is shown in Fig 6.
j) Power transmission
The power is transferred by the rotation of hand crank as shown in Fig 7. It includes two sprockets connected by a chain. One sprocket with 20 teeth is mounted on the crankshaft of the planting mechanism and other sprocket with 40 teeth is mounted on the handle side. One full rotation of the hand crank provides double planting of seedlings. Centre to center distance between two sprockets was kept at 98 cm. Roller chain having a pitch of 1.27 cm was used for transmitting power between two sprockets.
k) Steps for operating the machine
The machine should be operated in the following steps:
1. The machine should travel by pulling it in the backward direction.
2. One hand (left hand) should pull the handle and the other hand (right hand) should rotate the crank.
3. Make sure the seedlings are placed properly and horizontally on the tray.
4. The level of water should be at least 3-5 cm above the soil surface. Less water increases the pull resistance.
5. The machine can be pulled and plant the seedling continuously or it can be pulled, stopped at a desired distance and plant the seedlings and repeat the same process.
l) Performance evaluation of the developed transplanter
The developed prototype was tested in the agricultural field at IIT Kharagpur. The field was plowed to a depth of 15 cm and then puddled. The puddle soil was then leveled and was kept undisturbed for one day before testing. The machine was checked and tested in the laboratory to make sure that all the links and parts are working properly as required. The laboratory test mainly deals with the proper picking of seedlings from the tray and the number of seedlings picks per stroke of the finger. The machine was then put in the field condition. Before operating the machine, necessary adjustments like arrangements of seedlings and placement of seedlings on the tray were made and hence no time was wasted during the experiment. The speed of operation of the machine at 0.5 kmph was found to be suitable. However, it depends on the skill of the workers. Plant to plant spacing is to be maintained by the operator. Increasing the speed of operation likely to increase plant to plant spacing and vice-versa.