Soil Nutrient Based Land Suitability Analysis for Lentil Crop in Tarakeswar, Hooghly, West Bengal

DOI: 10.18805/ag.D-5111    | Article Id: D-5111 | Page : 343-349
Citation :- Soil Nutrient Based Land Suitability Analysis for Lentil Crop in Tarakeswar, Hooghly, West Bengal.Agricultural Science Digest.2020.(40):343-349
Chiranjit Singha, Kishore Chandra Swain kishore.swain@visva-bharati.ac.in
Address : Department of Agricultural Engineering, Institute of Agriculture, Visva-Bharati, Sriniketan-731 236, Birbhum, West Bengal.
Submitted Date : 18-12-2019
Accepted Date : 25-05-2020

Abstract

Background: Land suitability assessment can inform decisions on land uses suitable for maximizing crop yield while making best use, but not impairing the ability of natural resources such as soil to support development. We assessed the suitability of lentil to be produce in 300 ha land of Tarakeswar block of Hooghly district West Bengal. 
Methods: Suitability criteria included eight criterion, such as: soil texture (ST), electrical conductivity (EC), organic carbon (OC), available nitrogen(N), available phosphorous (P),available potassium(K) and available zinc (Zn). We modiûed and used a novel set of techniques to assess suitability: Analytical Hierarchy Process (AHP) pairwise comparison matrixand  Geographic Information System (GIS) software. 
Result: The exponential model generated by Ordinary Kriging was used to estimate the lentil land use suitability. Suitability distribution of deep layer found nearly 42% area under suitability class, i.e. S1-2  which may be used for growing the crop profitably. 

Keywords

AHP GIS Land suitability Lentil Soil profile

References

  1. Ali, M. and Gupta, S. (2012). Carrying capacity of Indian agriculture: pulse crops. Current Science. 102(6): 874-81.
  2. Bagherzadeh, A., Ghadiri, E., SouhaniDarban, A.R., Gholizadeh, A. (2016). Land suitability modeling by parametric-based neural networks and fuzzy methods for soybean production in a semi-arid region. Model Earth System Environment. 2: 1-11.
  3. Bhaskar, B.P., Bobade, S.V., Gaikwad, S.S., Sarkar, D., Anantwar S.G., Bhattacharyya, T. (2015). Soil informatics for agricultural land suitability assessment in Seoni district, Madhya Pradesh, India. Indian Journal of Agricultural Research. 49: 315-320.
  4. Bhowmick, M.K., Dhara, M.C., Singh, S.,Dar, M.H., Singh, U.S. (2014). Improved management options for submergence-tolerant (sub1) rice genotype in flood-prone rainfed lowlands of West Bengal. American Journal of Plant Sciences. 5: 14-23; http://dx.doi. org/10.4236/ajps.2014.51003. 
  5. Chowdhury, A.H. (2013). GIS-based land suitability assement of chickpea and lentil in Bangladesh,33rd ESRI Intyernation Conference Paper 2013 in San dDiego, California, USA,http://proceedings.esri.com/library/userconf/proc13/papers/80_24.pdf
  6. Diggle, P.J. and Ribeiro, P.J. Jr. (2002). Bayesian inference in Gaussian model-based geostatistics. Geography Environmental Modelling. 6: 129-146.
  7. Din, G. Y. and Yunusova, A. B. (2016). Using AHP for evaluation of criteria for agro-industrial projects. International Journal of Horticulture and Agriculture. 1(1): 6.
  8. Durdevic, B., Jug, I., Jug, D.,BogunovicI., Vukadinovic, V., Stipesevic, B., Brozovic. B. (2019). Spatial variability of soil organic matter content in Eastern Croatia assessed using different interpolation methods. International Agro-physics. 33: 31-39. doi: 10.31545/intagr/104372.
  9. FAO. (1979). Soil survey investigations for irrigation. Rome (Italy): FAO Soils Bulletin No. 42. FAO; http://www. fao. org/docrep/018/ar121e/ar121e.pdf; pp. 188. 
  10. FAO/STAT. (2014). The Statistics Division of FAO, Available at: http://faostat3.fao.org/home/index.html; or at: http:// faostat.fao.org 
  11. FRG, (2012). Fertilizer Recommendation Guide, Bangladesh Agriculture Research Council (BARC), Farmgate, Dhaka, 1215:274.
  12. McDowell, R.W., Snelder, T., Harris, S., Lilburne, L., Larned, S.T., Scarsbrook, M., Holgate, B., Phillips, J., Taylor, K., Curtis, A. (2018). The land use suitability concept: introduction and an application of the concept to inform sustainable productivity within environmental constraints. Ecology Indicator. 91: 212-219.
  13. Nalina, C.N., Anil Kumar, K.S., Chandrakala, M., Sheela Rani, S., Sujata, K., Shilpa Shree, K.G., Hegde, R., Singh, S.K. (2016). Soil nutrient status mapping of Nagenahalli micro-watershed under Eastern Dry Zone of Karnataka by Remote Sensing, Detailed Soil Survey and GIS Techniques. Indian Journal of Agricultural Research. 50: 389-397.
  14. NBBS and LUP, (1990). Soil resources of Tamil Nadu for land use planning - detailed report Bangalore Centre. 
  15. Saaty, T. (1980). The Analytic Hierarchy Process. New York (USA): McGraw-Hill: 287-295. 
  16. Saaty, T. (1993). The analytic hierarchy process: a 1993 overview. Central European Journal of Operational Research Economy. 2: 119-137. 
  17. Saaty, T. and Vargas, L. (2001). Methods, concepts and applications of the analytic hierarchy process. Boston: Kluwer Academic Publishers.
  18. Saaty, T.L. and Vargas, L.G. (2013). Decision making with the analytic network process. 2nd ed. New York, NY: Springer Publication. 
  19. Sahu, N., Obi Reddy, G.P., Kumar, N., Nagaraju, M. S. S. (2015). High resolution remote sensing, GPS and GIS in soil resource mapping and characterization- A Review. Agricultural Reviews. 36: 14-25.
  20. Savalia, S.G. and Gundalia, J.D. (2010). Characterization and evaluation of soil-site suitability for groundnut in the soils of Uben irrigation command area of Saurashtra region in Gujarat. Legume Research-An International Journal. 33: 79-86.
  21. Sell, R. and Aakre, D. (2019). Lentil, North Dakota State University NDSU Extension Service, http://www.pulseusa.com/doc/lentil.pdf. 
  22. Singh, A. K., Biradar, C., Sarker. A. (2017). Mapping Suitable Areas for Growing Pulses in Rice-Fallows using Multi-Criteria Spatial Decisions. Agricultural Research Knowledge, https://hdl. handle.net/20.500.11766/7772.
  23. Singha, C. and Swain, K.C. (2016). Land suitability evaluation criteria for agricultural crop selection: A review. Agricultural Review. 37 (2): 125-132.
  24. Soil Survey Staff (2012). Soil survey manual. Agricultural handbook. No. 18, US Department of Agriculture, Soil Conservation Service, Washington, DC.
  25. Soil Survey Staff (2014). Soil survey manual. Agricultural handbook. No. 18, US Department of Agriculture, Soil Conservation Service, Washington, DC.
  26. Sys, C., Van Ranst, E., Debaveye, J. (1991). Land evaluation, part I: Principles in land valuation and crop production calculation. Agricultural Publications General Administration for Development Cooperation, Brussels, Belgium: 7.
  27. Sys, C., Van Ranst, E., Debaveye, J., Beernaert, F. (1993). Land evaluation, Part III: Crop requirements. Agricultural Publications No 7. General Administration for Development Cooperation, Belgium.
  28. Thilagam V. K. and Sivasamy. R. (2013). Role of remote sensing and GIS in land resource Inventory - A review. Agricultural Reviews. 34: 223-229.
  29. Wali, E., Datta, A., Shrestha, R. P., Shrestha, S. (2016). Development of a land suitability model for saffron (Crocus sativus L.) cultivation in Khost Province of Afghanistan using GIS and AHP techniques. Archives of Agronomy and Soil Science. 62(7): 921-934, DOI: 10.1080/03650340.2015. 1101519. 
  30. Webster, R. and Oliver, M.A. (2001). Geostatistics for Environmental Scientists. John Wiley and Sons publishers, Brisbane, Australia.
  31. White, H.E., Orlova, E.V., Chen, S., Wang, L, Ignatiou A, Gowen B, Stromer T, Franzmann TM, Haslbeck M, Buchner J, Saibil HR (2006). Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26. Structure. 14(7): 1197-1204.
  32. Yadav, S. S., McNeil, D. L., Stevenson, P. C. (Eds.). (2007). An Ancient Crop for Modern Times, Lentil. doi:10.1007/978-1-4020-6313-8. 

Global Footprints