COI Gene: A Reliable Tool for Tracing the Phylogeny in Sphingid Moths (Lepidoptera: Sphingidae)

DOI: 10.18805/ag.D-5021    | Article Id: D-5021 | Page : 27-33
Citation :- COI Gene: A Reliable Tool for Tracing the Phylogeny in Sphingid Moths (Lepidoptera: Sphingidae).Agricultural Science Digest.2020.(40):27-33
Devinder Singh, Navneet Kaur navneet.kaur2k89@gmail.com
Address : Department of Zoology and Environmental Sciences, Punjabi University, Patiala-147 002, Punjab, India.
Submitted Date : 21-08-2019
Accepted Date : 22-11-2019

Abstract

In the current study, a partial sequence of 536 bp (approx) of COI gene for seven species belonging to family Sphingidae were analysed. The study was conducted on a collection of moths from northern India, mainly in the states of Himachal Pradesh, Uttarakhand and Punjab. The sequences have been added to the database at GenBank NCBI. The analysis showed mean K2P divergence of 0.59% at intraspecific level, 6.3% at interspecific and 12.2% at intergeneric level. The analysis showed a hierarchal increase in K2P mean divergence across different taxonomic levels giving an intraspecific range of 0.0% to 3.6%, interspecific range of 5.8% to 9.3% and intergeneric range of 8.6% to 13.8%.

Keywords

DNA Barcode Mitochondrial gene Phylogeny Sphingidae

References

  1. Benton, T.G. (1995). Biodiversity and biogeography of Henderson island insects. Biological Journal of the Linnean Society. 56(1-2): 245-259.
  2. Brown, J.M., Pellmyr, O., Thompson, J.M., Harrison, R.G. (1994). Phylogeny of Greya (Lepidoptera: Prodoxidae), based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II: congruence with morphological data. Molecular Biology and Evolution. 11:128–141.
  3. Cameron, S.L and Whiting, M.F. (2007). The complete mitochondrial genome of the tobacoo hornworm, Manduca sexta (Insecta: Lepidoptera: Sphingidae) and an examination of mitochondrial gene variability within butterflies and moths. Genome. 408:112-123.
  4. Clary, D.O and Wolstenholme, D.R. (1985). The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution. 22:252-271.
  5. Dobler, S and Farrell, B.D. (1999). Host use evolution in Chrysochus milkweed beetles: evidence from behaviour, population genetics and phylogeny. Molecular Evolution. 8:1297-1307.
  6. Farrell, B.D., Sequeira, A.S., O’Meara, B., Normark, B.B., Chung, J., Jordal, B.H. (2001). The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution. 55:2011-2027. 
  7. Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology. 3:294-299.
  8. Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., Hebert, P.D.N. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America. 103:968-971.
  9. Hausmann, A., Haszprunar, G., Hebert, P.D.N. (2011). DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises and Questions. PLoS One. 6(2): e17134. Doi: 10.1371/journal.pone.0017134.
  10. Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R. (2003). Biological identification through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences. 270:313-321.
  11. Hundsoerfer, A.K., Kitching, I.J., Wink, M.A. (2005). Molecular phylogeny of the hawkmoth genus Hyles (Lepidoptera: Sphingidae: Macroglossinae). Molecular Phylogenetics and Evolution. 35:442-458.
  12. Kambhampati, S and Rai, K.S. (1991). Mitochondrial DNA variation within and among populations of the mosquito, Aedes albopictus. Genome. 34:288-292.
  13. Kehimkar, I. (1997). Moths of India: An introduction by NCSTC-    Hornbill Natural History Series. Printed in Mumbai, India by Selprint.
  14. Kekkonen, M., Mutanen, M., Kaila, L., Niemmen, M., Hebert, P.D.N. (2015). Delineating species with DNA Barcodes: A case of taxon dependent method performance in moths. Plos. One. 10(4): e0122481.
  15. Kim, M.J., Kim, J.S., Kim, I. (2016). Complete mitochondrial genome of the hawkmoth Notonagemia analis scribae (Lepidoptera:Sphingidae). Mitochondrial. DNA. 1(1):416-418.
  16. Rougerie, R., Kitching, I.J., Haxaire, J., Miller, S.E., Hausmann, A., Hebert, P.D.N, (2014). Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions. Plos. One. 9(7): e101108.
  17. Sequeira, A.S., Normark, B.B., Farrell, B.D. (2000). Evolutionary assembly of the conifer fauna: Distinguishing ancient from recent associations in bark beetles. Proceedings of the Royal Society Biological Series B. 267:2359-2366.
  18. Shaw, K.L. (1996a). Polygenic inheritance of a behavioral phenotype: Interspecific genetics of song in the Hawaiian cricket genus Laupala. Evolution. 50:256-66.
  19. Shaw, K.L. (1996b). Sequential radiations and patterns of speciation in the Hawaiian cricket genus Laupala inferred from DNA sequences. Evolution. 50:37-255.
  20. Singh, D and Kaur, N. (2017). DNA Barcoding of some Indian species of Hawk Moths based on COI Gene (Lepidoptera: Sphingidae). Journal of Entomology and Zoology Studies. 5(4):35-40.
  21. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2018). MEGA7: molecular evolutionary genetics analysis version 7.0. Molecular Biology and Evolution. 30:2725-2729.
  22. Van Nieukerken, E.J., Kaila, L., Kitching, I.J., Kristensen, N.P., Lees, D.C., Minet, J. (2011). Order Lepidoptera Linnaeus, 1758. Magnolia Press Auckland. Zootaxa. 3148:212-221.

Global Footprints