Role of Bacillus aryabhattai in plant growth and development

DOI: 10.18805/ag.D-4723    | Article Id: D-4723 | Page : 46-50
Citation :- Role of Bacillus aryabhattai in plant growth and development.Agricultural Science Digest.2019.(39):46-50
Ibomcha Ngangom, M.M. Nisha, S. Santhosh Kumar, K.V. Ravindra, Leela Tewari and S. Sushmitha ibomcha.s@miklensbio.com
Address : Miklens BioPvt Ltd 70/1, HKK Industrial Estates, Cheemasandra, Bidarahalli Hobli, Virgonagar Post, Bangalore-560 049, Karnataka, India.
Submitted Date : 2-02-2018
Accepted Date : 8-10-2018

Abstract

Plants produce a wide range of organic compounds like sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, enzymes, which may act directly or indirectly to activate plant immunity and regulate plant growth. Plant signalling molecules such as auxin and cytokinin can be produced by microorganisms to colonize efficiently with roots and enhance root activity. The isolated microbe Bacillus aryabhattai, has the ability to produce1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene level, often a result of various stresses, and is found to be a key component in the efficacious functioning of this bacterium. The optimal functioning of this bacterium includes the synergistic interaction between ACC deaminase, and plant with bacterial indole-3-acetic acid (IAA).

Keywords

ACC deaminase Bacillus aryabhattai Induced Systemic Tolerance.

References

  1. Assaeedi, A. S. A., Osman, G. E. H. and Abulreesh, H. H. (2011). The occurrence and insecticidal activity of Bacillus thuringiensis in the arid environments. Australian Journal of Crop Science, 5(10):1185-1190 
  2. B. Mohite J. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal Of Soil Science And Plant Nutrition,13(3): Epub 27-Ago-2013.
  3. Bernard R. Glick. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012: 15.
  4. Bernard R. Glick. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169 (1): 30-39.
  5. Dinesh K. Maheshwari, (2015). Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, 12: 183-259.
  6. Dinesh K. Maheshwari, (2011). Bacteria in Agrobiology: Plant Nutrient Managementience, XII, 345.
  7. Dworken, M. and J. Foster. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75: 592-601.
  8. Francisco X. N, Márcio J. R, Cláudio R. F. S. Soares, B. J. McConkey, and Bernard R. G. (2014), New Insights into 1-Aminocyclopropane-    1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance, Public Library of Science one, 9(6): e99168.
  9. Petersen, F.C. and Scheie, A.A. (2000), Genetic transformation in Streptococcus mutans requires a peptide secretion-like apparatus. Oral Microbiol and Immunoogyl, 15: 329-33.
  10. Randy Ortíz-Castro, Hexon Angel Contreras-Cornejo, Lourdes Macías-Rodríguez and José López-Bucio, (2009). The role of microbial signals in plant growth and development. Plant Signalling & Behavior, 4(8): 701–712. 
  11. Szkop M, Sikora P, and Orzechowski S. (2012). A novel, simple, and sensitive colorimetric method to determine aromaticamino acid aminotransferase activity using the Salkowski reagent. Folia Microbiologica, 57(1):1-4.
  12. Shaik Zulfikar, Vardharajula Sandhya, and Linga Venkateswar Rao (2013). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64(2): 493–502. 
  13. Travers RS, Martin PAW, and Reichelderfer CF (1987). Selective isolation of soil Bacillus spp. Applied and Environmental Microbiology, 53: 1263-1266.

Global Footprints