Agricultural Science Digest

  • Chief EditorArvind kumar

  • Print ISSN 0253-150X

  • Online ISSN 0976-0547

  • NAAS Rating 5.52

  • SJR 0.156

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Science Digest, volume 37 issue 2 (june 2017) : 137-140

Metarhiziumanisopliae (Metchnikoff) Sorokin as an alternative to chemical pesticides against Odontotermesobesus (Rambur) in the era of organic agriculture

Joyarani Pegu*, Pranab Dutta, Rana Pratap Bhuyan, Apurba Das
1<p>Department of Plant Protection (Pathology), College of Horticulture, AAU, Jorhat-785 013, Assam, India.</p>
Cite article:- Pegu* Joyarani, Dutta Pranab, Bhuyan Pratap Rana, Das Apurba (2017). Metarhiziumanisopliae (Metchnikoff) Sorokin as an alternative to chemical pesticides against Odontotermesobesus (Rambur) in the era of organic agriculture . Agricultural Science Digest. 37(2): 137-140. doi: 10.18805/asd.v37i2.7989.

Odontotermesobesus (Rambur) is one of the most destructive termite species to most of the cultivated crops. Against which a bioassay test with Metarhiziumanisopliae (Metchnikoff) Sorokin was conducted in the laboratory at nine different concentrations ranging from 1×103 to 1×1011 conidia/ml. Three different medium that is termitorium soil, sterilised soil and Whatman No.1 filter paper based medium were used for the bioassay. Conidial suspension of M. anisopliae when treated to termite on termitorium soil based medium was more pathogenic and could cause highest mortality (83.88 %) of the termites with a week. Conidia of the fungus were found to burst out from the host body after 7th day of treatment. Infected termites showed progressive symptoms of sluggishness as compared with control. Mortality of termites showed presence of black melanisation spot on the cuticle. 


  1. Abbott, W.S. (1925). A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265- 267.

  2. Anonymous 2000. Research highlights 1999-2000. National Research Centre for Cashew (ICAR), Puttur,Karnataka, India, p. 24.

  3. Culliney, T.W. and Grace, J.K. (2000). Prospects for the biological control of subterranean termites (Is optera: Rhinotermitidae) in soils of different composition. J. Econ. Entomol. 96: 1267-1274.

  4. Grace, J.K., (1997). Biological control strategies for suppression of termites. J. Agric. Entomol. 14: 281–289.

  5. Hanel, H. and Watson, J.A.L. (1983). Preliminary field tests on the use of Metarhiziumanisopliae for the control of Nasutitermesexitiosus (Hill) (Isoptera: Termitidae). Bull. Entomol. Res. 73: 305–313.

  6. Hussain, A.; Ahmed, S. and Shahid, M. (2011). Laboratory and field evaluation of Metarhiziumanisopliae var. anisopliae for controlling subterranean termites. Neotrop. Entomol. 40(2): 244-250.

  7. Jiang, S.; James R.F. and Gregg, H. (2002). Sporulation of Metarhiziumanisopliae and Beauveriabassiana on Coptotermesformosanus and in vitro. J. Invert. Pathol. 81: 78-85.

  8. Jiang, S.; James R.F. and Gregg, H. (2003). Effects of virulence, sporulation, temperature on Metarhiziumanisopliae and Beauveriabassiana laboratory transmission in Coptotermesformosanus. J. Invert. Pathol. 84: 38-46.

  9. Kramm, K.R. and West, D.F. (1982). Termite pathogens: effects of ingested Metarhizium, Beauveria, and Gliocladium conidia on worker termites (Reticulitermes sp.). J. Invertebr. Pathol. 40: 7–11.

  10. Lai, P.Y. (1977). Biology and ecology of the Formosan subterranean termite, Coptotermesformosanus and its susceptibility to the entomogenous fungi, Beauveriabassiana and Metarhiziumanisopliae. Ph.D dissertation, University of Hawaii, Honolulu, Hawaii, USA, p. 140.

  11. Milner, R.J. (2000). Current status of Metarhizium as mycoinsecticide in Australia. BNI 21: 47-50.

  12. Milner, R.J. and Staples, J.A. (1996). Biological control of termites: results and experiences within a CSIRO project in Australia. Biocontrol Sci. Tech. 6: 3–9.

  13. Nobre, T. and Aaneu, K.D. (2010). Dispersion and colonisation by fungus-growing termites. Commun.Integr.

  14. Pegu, J.R.; Dutta, P.; Puzari, K.C.; Nath, P.D. and Das, P. (2012). First report of Metarhiziumanisopliae (Metchinkoff) Sorokin on cow pea aphid (Aphis crassivora Koch) (Homoptera: Aphididae) from North East India. J. Mycol. Pl. Pathol. 42(1): 174-175.

  15. Rath, A.C. (2000). The use of entomopathogenic fungi for control of termites. Biocontrol Sci. Technol. 10: 563–581.

  16. Smythe, R.V. and Coppel, H.C. (1965). The susceptibility of Reticulitermesûavipes (Kollar) and other termite species to an experimental preparation of Bacillus thuringiensis Berliner. J. Inverteb. Pathol. 7: 423–426.

  17. Swaran, P.R. and Varma, R.V. (2003). Laboratory evaluation of the entomopathogenic fungus, Metarhiziumanisopliae var. major against subterranean termites, OdontotermesguptaeRoonwal and Bose. J. Biol. Ctrl. 17: 147–151.

  18. Vey, A.; Farques, J. and Robert, P. (1982). Histological and ultrastructural studies of factors determining.

  19. Yendol, W.G. and Paschke, J.D. (1965). Pathology of an Entomophthora infection in the eastern subterranean termite Reticulitermesûavipes (Kollar). J. Invertebr. Pathol. 7: 414–422.

Editorial Board

View all (0)