Agricultural Science Digest

  • Chief EditorArvind kumar

  • Print ISSN 0253-150X

  • Online ISSN 0976-0547

  • NAAS Rating 5.52

  • SJR 0.156

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Science Digest, volume 34 issue 1 (march 2014) : 8-14

IMPROVING PADDY STRAW DIGESTIBILITY AND BIOGAS PRODUCTION THROUGH DIFFERENT CHEMICAL-MICROWAVE PRETREATMENTS

Karamjeet Kaur*, Urmila Gupta Phutela1
1Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana-141 004, India
Cite article:- Kaur* Karamjeet, Phutela1 Gupta Urmila (2024). IMPROVING PADDY STRAW DIGESTIBILITY AND BIOGAS PRODUCTION THROUGH DIFFERENT CHEMICAL-MICROWAVE PRETREATMENTS. Agricultural Science Digest. 34(1): 8-14. doi: 10.5958/j.0976-0547.34.1.002.
Biofuel and Bioenergy generation from paddy straw offers a great potential as an alternative to fossil-fuels. Association of holocellulose with the protective structures such as lignin and silica adversely affects the conversion of paddy straw into the desired product. In this context, paddy straw was pretreated with different concentrations (0-10%) of various chemicals viz. NH3, Na2SO3, Na2CO3 and NaOH by soaking for 48h and by irradiating with microwave (720W, 180oC) for 60 min. Chemical-microwave pretreatment was found to be better than the chemical-alone pretreatment. Amongst the various chemical pretreatments, 4% Na2CO3 -microwave and 4% NaOH-microwave was found to greatly enhance the paddy straw digestibility and biogas production where 44.3% and 65.6% increase in cellulose, 15.0% and 68.3% decrease in lignin, and 84.5% and 92.5% decrease in silica was observed resulting in 54.4% and 60.9% increase in biogas production, respectively.
  1. AOAC (2000). Association of Official Analytical Chemists, Official Methods of Analysis, 17th Edition, Maryland, USA.
  2.     Azuma, J., Tanaka, F. and Koshijima, T. (1984). Enhancement of enzymatic susceptibility of    lignocellulosic         wastes by microwave irradiation. J. Fermn. Technol. 62(4): 377-384.   
  3. Dubois, M., Gilles, K.A., Hamilton, J.K. , Rebers, P.A.  and Smith F. (1956). Calorimetric method for determination of         sugars and related substances. Anal. Chem. 28: 350-356
  4. Eun, J.S., Beauchemin, K.A., Hong, S.H. and Bauer, M.W. (2006). Exogenous enzymes added to untreated or ammoniated         rice straw: Effects on in vitro fermentation characteristics and degradability. Anim. Feed Sci. Technol. 131: 86-101.
  5. Fox, M. and Noike, T. (2004). Wet oxidation pretreatment for the increase in anaerobic biodegradability of newspaper         waste. Bioresour. Technol. 91: 273-281.
  6. Hendriks, A.T.W.M. and Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass.         Bioresour. Technol. 100: 10-18.
  7. Khan, A.W., Miller, S.S. and Murray, W.D. (1983). Development of a two phase combination fermentor for conversion         of cellulose to methane. Biotechnol. Bioeng. 25: 1571-1579.
  8. Kitchaiya, P., Intanakul, P. and Krairish, M. (2003). Enhancement of enzymatic hydrolysis of lignocellulosic wastes by         microwave pretreatment under atmospheric pressure. J. Wood Chem. Technol. 23(2): 217-225.
  9. Ma, H., Liu, W.W., Chen, X., Wu, Y.J. and Yu, Z.L. (2009). Enhanced enzymatic saccharification of rice straw by         microwave pretreatment. Bioresour. Technol. 100: 1279-1284.
  10. Okano, K., Kitagawa, M., Sasaki, Y. and Watanabe, T. (2005). Conversion of Japanese red cedar (Cryptomeria japonica)         into a feed for ruminants by white-rot basidiomycetes, Anim. Feed Sci. Technol. 120: 235-243.
  11. Ooshima, H., Aso, K. and Harano, Y. (1984). Microwave treatment of cellulosic materials for their enzymatic hydrolysis.         Biotechnol. Letts. 6(5): 289-294.
  12. Park, S.Y., Koda, K., Matsumoto, Y., Meshitsuka, G. and Iiyama, K. (2000). Oxygen weak base pulping of rice straw         with minimum silica removal. Japan TAPPI Journal 54(9): 1245- 1251.
  13. Pavlostathis, S.G. and Gossett, J.M. (1985). Alkaline treatment of wheat straw for increasing anaerobic biodegradability.         Biotechnol. Bioeng. 27: 334-344.
  14. Sun, Y. and Cheng, J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol.         83: 1-11.
  15. Van Soest P.J. (2006).  Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci Technol. 130(3-        4): 137-171.
  16. Xin, L.Z. and Kumakura, M. (1993). Effect of radiation pretreatment on enzymatic hydrolysis of rice straw with low         concentrations of alkali solution. Bioresour. Technol. 43: 13-17.
  17. Xiong, J., Ye, J., Liang, W.Z. and Fan, P.M. (2000). Influence of microwave on the ultrastructure of cellulose1. J. South         Chin. Univ.Technol. 28(3): 84-89.
  18. Yang, D.Y., Li, X.J., Gao, Z.J. and Wang, Y.W. (2003). Improving biogas production of corn stalk through chemical and         biological pretreatment: a preliminary comparison study. Trans. Chin. Soc. Agric. Eng. 19(5): 209-213.
  19. Zhang, Q. and Cai, W. (2008) Enzymatic hydrolysis of alkali pretreated rice straw by Trichoderma reesei ZM4-F3.             Biomass Bioener. 32: 1130-1135.
  20. Zhu, S., Wu, Y., Yu, Z., Liao,  J. and Zhang, Y. (2005)  Pretreatment by microwave/alkali of  rice straw and its enzymic         hydrolysis. Process Biochem. 40: 3082-3086.

Editorial Board

View all (0)