A Comparative Study of Chlorophyll Content Estimation in Barley (Hordeum vulgare L.) Genotypes Based on RGB (Red, Green, Blue) Image Analysis

DOI: 10.18805/ag.D-305    | Article Id: D-305 | Page : 68-71
Citation :- A Comparative Study of Chlorophyll Content Estimation in Barley (Hordeum vulgare L.) Genotypes Based on RGB (Red, Green, Blue) Image Analysis.Agricultural Science Digest.2022.(42):68-71
Ali Guendouz, Hocine Bendada, Ramadan Benniou guendouz.ali@gmail.com
Address : National Institute of the Agronomic Research of Algeria, Setif, Algeria.
Submitted Date : 27-08-2020
Accepted Date : 1-01-2021


Background: Chlorophyll is the most important pigment in plant which absorbs light and subsequently transfers its energy to drive the photochemical reactions of photosynthesis. The numerical image processing techniques have been widely used in the analysis of leaf characteristics.
Methods: The methods based on RGB (Red, Green and Blue) image analysis may emerge as a new and low-cost method for estimation the chlorophyll content. In this work, we use eight RGB vegetation indices as alternative for chlorophyll content estimation. 
Result: The student t-test showed that all the RGB indices tested are suitable to estimate the chlorophyll content in barley genotypes. In addition, the results which based on the correlation analysis in combination with the values of root mean squared error (RMSE) demonstrate that the very suitable RGB indices are these with high values of correlation coefficient and lowest values of RMSE. Data collected from barley genotypes leaves indicated that digital image processing technology can be a useful and rapid non-destructive method for assessment of chlorophyll content. Among the RGB indexes tested in this study the 100-(2R-B) and RGRI (R/G) are the most promising index to estimate the chlorophyll content in barley genotypes.


Barley Chlorophyll Leaf image analysis RGB model SPAD


  1. Adamsen, F.J., Pinter, P.J., Barnes, E.M., La Morte, R.L., Wall, G.W., Leavitt, S.W. and Kimball, B.A. (1999). Measuring wheat senescence with a digital camera. Crop Sci. 39: 719-724.
  2. Bama, B.S., Valli, S.M., Raju, S. and Kumar, V.A. (2011). Content based leaf image retrieval (CBLIR) using shape, color and texture features. Indian J Eng Mater S. 1: 202-211. 
  3. Chen, Z. Wang, F., Zhang, P., Ke, C., Zhu, Y., Cao, W. and Jiang, H. (2020). Skewed distribution of leaf color RGB model and application of skewed parameters in leaf color description model. Plant Methods. 16(23): 1-8. 
  4. Guendouz, A. and Hafsi, M. (2017). New developed models to estimate leaf chlorophyll content in durum wheat (Triticum durum Desf.) under semi-arid conditions. International Journal of Biosciences. 10(3): 118-123.
  5. Guendouz, A., Guessoum, S., Maamri, K., Benidir, M. and Hafsi, M. (2013). Performance of Ten Durum Wheat (Triticum Durum Desf.) Cultivars under semi arid conditions (North Africa -Algeria-). Indian Journal of Agricultural Research. 47(4): 317-322.
  6. Guendouz, A. Guessoum, S. Maamari, K. and Hafsi, M. (2012). Predicting the efficiency of using the RGB (Red, Green and Blue) reflectance for estimating leaf chlorophyll content of Durum wheat (Triticum durum Desf.) genotypes under semi arid conditions. American-Eurasian Journal of Sustainable Agriculture. 6(2): 102-106.
  7. Hu, H., Liu, H., Zhang, H., Zhu, J., Yao, X., Zhang, X. and Zheng, K. (2010). Assessment of chlorophyll content based on image color analysis, comparison with SPAD-502. In: 2010 2nd international conference on information engineering and computer science. pp. 1-3
  8. Kawashima, S. and Nakatani, M. (1998). An algorithm for estimating chlorophyll content in leaves using a video camera. Annals of Botany. 81(1): 49-54.
  9. Moghaddam, P.A., Derafshi, M.A.H. and Shirzad, V. (2011). Estimation of single leaf chlorophyll content in sugar beet using machine vision. Turkish Journal of Agriculture and Forestry. 35: 563-568.
  10. Pushpanathan, K.R., Vijaya Kumar, M. and Siddeswaran, K. (2004). Chlorophyll meter as a tool to determine the time of application of N in rice (Oryza Sativa L.). Agricultural Reviews. 25 (4): 309-312.
  11. Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J. and Stenseth, N.C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20: 503-510.
  12. Pérez-Patricio, M., Camas-Anzueto, J.L., Sanchez-Alegría, A., Aguilar-González, A., Gutiérrez-Miceli, F., Escobar-Gómez, E., Voisin, Y., Rios-Rojas, C. and Grajales-Coutiño, R. (2018). Optical method for estimating the Chlorophyll Contents in Plant Leaves. Sensors. 18: 650.
  13. Saberioon, M.M., Amin, M.S.M., Anuar, A.R., Gholizadeh, A., Wayayok, A. and Khairunniza-Bejo, S. (2014). Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. Int. J. Appl. Earth Obs. Geoinf. 32: 35-45.
  14. Yadav, S.P., Ibaraki, Y. and Dutta Gupta, S. (2010). Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant cell Tiss Org.100: 183-188.
  15. Zhang, Y.H, Tang, L., Liu, X.J., Liu, L.L., Cao, W.X. and Zhu, Y. (2014). Modeling dynamics of leaf color based on RGB value in Rice. J. Integr. Agr. 13: 749-59.

Global Footprints