Acute and Chronic Effects of Aluminum Smelter Dust on Hematology, Metal Bioaccumulation and Oxidant-antioxidant Status in Rat

DOI: 10.18805/ag.D-287    | Article Id: D-287 | Page : 218-224
Citation :- Acute and Chronic Effects of Aluminum Smelter Dust on Hematology, Metal Bioaccumulation and Oxidant-antioxidant Status in Rat.Agricultural Science Digest.2021.(41):218-224
Khadiga G. Adham, Atheer M. Asiri kadham_100@yahoo.com
Address : Zoology Department, Faculty of Science, Alexandria University, Moharram Bey, Alexandria 21511, Egypt.
Submitted Date : 1-06-2020
Accepted Date : 4-08-2020


Background: Aluminum smelting industry is implicated with documented health risks. This study examined toxic effects of aluminum smelting dust as a real-life chemical hazard instead of single aluminum compounds, which seldom exist in real life. 
Methods: Adult male rats were gavaged acute (3 consecutive days) and chronic (6 weeks) doses of two dust concentrations (10 and 20 mg kg-1). Experimental investigation included toxic metal accumulation and biochemical analysis of blood and liver. 
Result: Aluminum and iron were highest in dust and respectively accumulated in brain, liver and kidneys. Anemia, inflammation, liver and kidney damage and oxidative stress were established in view of thrombocytopenia (35%), leukocytosis (41%), lymphocytosis (55%) and alterations in aminotransferases, creatinine, malondialdehyde, superoxide dismutase and catalase. Aluminum facilitation of iron-mediated lipid peroxidation is suggested. These findings drew attention to the magnitude (dose-dependent) and persistence (time-dependent) of aluminum dust as health compromising and are of particular significance to workers in aluminum smelting industries.


Aluminum dust Bioaccumulation Hemogram Oxidative stress Serum biochemistry


  1. Abdelhamid, F.M., Mahgoub, H.A., Ateya, A.I. (2020). Ameliorative effect of curcumin against lead acetate-induced hemato-biochemical alterations, hepatotoxicity, and testicular oxidative damage in rats. Environmental Science and Pollution Research. (in press) https://doi.org/10.1007/s11356-020-07718-3.
  2. Abubakar, M.G., Taylor, A., Ferns, G.A. (2003). Aluminium administration is associated with enhanced hepatic oxidant stress that may be offset by dietary vitamin E in the rat. International Journal of Experimental Pathology. 84(1): 49-54.
  3. Adham, K., Alkhalifa, A., Farhood, M., Aleisa, N., Daghestani, M.(2014). Oxidative stress and antioxidant response to subacute and subchronic iron overload in Wistar rat. Biologia. 69(6): 817-824.
  4. Adham, K.G., Al-Eisa, N.A. and Farhood, M.H. (2011). Impact of heavy metal pollution on the hemogram and serum biochemistry of the libyan jird, Meriones libycus. Chemosphere. 84(10): 1408-1415. 
  5. Argente, M.J., Abad-Salazar, D.M., Bermejo-González, E., García, M.L. and López-Palazón, A. (2019). Reference Values for Selected Blood Parameters in Rabbits: Effects of Age and Physiological Status. Indian Journal of Animal Research. 22(1): 33-41.
  6. Balgoon MJ Assessment of the protective effect of Lepidium sativum against aluminum-induced liver and kidney effects in albino rat. BioMed Research International. (Volume 2019) (in press), Article ID 4516730, 9 pages, https://doi.org/10.1155/2019/4516730.
  7. Baskett, A., Barton, M.H., Norton, N., Anders, B., Moore, J.N. (1997). Effect of pentoxifylline, flunixin meglumine and their combination on a model of endotoxemia in horses. American Journal of Veterinary Research. 58(11): 1291-1299.
  8. Canli, E.G., Canli, M. (2017). Effects of aluminum, copper and titanium nanoparticles on some blood parameters in Wistar rats. Turkish Journal of Zoology. 41(2): 259-266.
  9. CCME Canadian soil quality guidelines for the protection of environmental and human health, Canadian Council of Ministers of the Environment, Winnipeg (2007), Canada.
  10. Chance, B., Sies, H., Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiological Reviews. 59(3): 527-605.
  11. Chmielnicka, J., Nasiadek, M., Pínkowski, R., Paradowski, M. (1994). Disturbances of morphological parameters in blood of rats orally exposed to aluminum chloride. Biological Trace Element Research. 42(3): 191-199.
  12. Engwa, G.A., Ferdinand, P.U., Nwalo, F.N. (2019). Unachukwu MN Mechanism and health effects of heavy metal toxicity in humans. In: Poisoning in the Modern World-New Tricks for an Old Dog? IntechOpen, DOI: 10.5772/intechopen. 82511.
  13. FAO/WHO codex general standards for contaminants and toxins in foods (1996); WHO and Encyclopedia of Environmental Science; WHO (2000).
  14. Fibach, E., Rachmilewitz, E. (2008). The role of oxidative stress in hemolytic anemia. Current Molecular Medicine. 8(7): 609-19.
  15. Geyikoglu, F., Türkez, H., Bakir, T.O., Cicek, M. (2013). The genotoxic, hepatotoxic, nephrotoxic, haematotoxic and histopathological effects in rats after aluminium chronic intoxication.Toxicology & Industrial Health. 29(9): 780-791.
  16. Hundekari, I.A., Suryakar, A.N., Rathi, D.B. (2013). Acute organo-    phosphorus pesticide poisoning in North Karnataka, India: oxidative damage, haemoglobin level and total leukocyte. African Health Sciences. 13(1): 129-136.
  17. IACUC (2008). Use of Animals in Research, Testing and Teaching. Institutional Animal Care and Use Committees (IACUC) (412-383-2008). www.iacuc.pitt.edu/policies.asp
  18. Kumar, B., Mondal, D.B., Jithin, M.V. (2018). Oxidant markers and their impact on antioxidant status and erythrocyte fragility in the ileriasis in calves. Indian Journal of Animal Research. 52: 1762-1765.
  19. Ighodaro, O.M., Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 54(4): 287-293.1
  20. Lala, V., Goyal, A., Bansal, P., Minter, D.A. (2020). Liver Function Tests In: StatPearls [Internet]. Treasure Island (FL): Stat Pearls Publishing; Jan-. Available from: https://www.ncbi. nlm.nih.gov/books/NBK482489/
  21. Levey, A.S., Perrone, R.D. Madias, N.E. (1988). Serum creatinine and renal function. Annual Review of Medicine. 39(1): 465-490.
  22. Makwana, C.N., Rao, S.S., Patel, U.D., Modi, C.M., Patel, H.B., Fefar, D.T. (2019). Status of oxidative stress in cerebral cortex and testes, acetylcholinesterase activity in cerebral cortex and sperm parameters in cadmium-exposed rats. Indian Journal of Animal Research. DOI: 10.18805/ijar.B-3844. 
  23. Margina, D., Niulescu, G.M., Ungurianu, A., Mesnage, R., Goumenou, M., Sarigiannis, D.A., Aschner, M., Spandidos, D.A., Renieri, E.A., Hernández, A.F., Tsatsakis, A. (2019). Overview of the effects of chemical mixtures with endocrine disrupting activity in the context of real life risk simulation (RLRS): An integrative approach (Review), World Academy of Sciences Journal. 1: 157-164. 
  24. Mark, H., Workman, J. (2010). Chemometrics in Spectroscopy, 1st ed. Boston, A: Elsevier/Academic Press.
  25. Muayad, T.A.M., Haniza, M.Z.H., Husni, I., Tawang, A. (2018). Haematological values of apparently healthy indigenous goats in Malaysia: A comparative study, Indian Journal of Animal Research. 52(12): 1701-1704.
  26. Nehru, B. Anand, P. (2005). Oxidative damage following chronic aluminium exposure in adult and pup rat brains. Journal of Trace Elements in Medicine and Biology. 19(2-3): 203-208.
  27. Newairy, A.S.A., Salama, A.F., Hussien, H.M., Yousef, M.I. (2009). Propolis alleviates aluminium-induced lipid peroxidation and biochemical parameters in male rats. Food and Chemical Toxicology. 47(6): 1093-1098.
  28. Nkpaa, K.W., Iwuanyanwu, K.C.P., Wegwu, M.O., Essien, E.B. (2016). Health risk assessment of hazardous metals for population via consumption of seafood from Ogoniland, Rivers State, Nigeria; A case study of Kaa, B-Dere and Bodo City, Environmental Monitoring and Assessment. 188: 1-10.
  29. Porokhovnik, N., Passekov, V.P., Gorbachevskaya, N.L., Sorokin, A.B., Veiko, N.N., Lyapunova, N.A. (2015). Active ribosomal genes, translational homeostasis and oxidative stress in the pathogenesis of schizophrenia and autism. Psychiatric Genetics. 25(2): 79-87.
  30. Reuter, M.A., Boin, U.M.J., Verhoef, E., Heiskanen, K., Yang, Y., Georgalli G. (2005). Aluminium Metal Production, The Metrics of Material and Metal Ecology: Harmonizing the Resource, Technology and Environmental Cycles, Vol. 16, Elsevier Science: Amsterdam, The Netherlands, pp 391-451.
  31. Trykova, M., Kostova, I. (2005). Coumarin derivatives and oxidative stress. International Journal of Pharmaceutics. 1: 29-32.
  32. Tüzen, M. (2003). Determination of heavy metals in fish samples of the Middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry. 80: 119-123.
  33. Wu, Z., Du, Y., Xue, H., Wu, Y., Zhou, B. (2012). Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiology of Aging. 33(1): 199 -e 1-12. 

Global Footprints