Loading...

Detection of Heterozygosity and Allelic Frequency of Indian and Southeast Asian Types of Oecophylla smaragdina (Fabricius) (Hymenoptera, Formicidae) in Bangladesh using Microsatellite Markers

DOI: 10.18805/ag.D-281    | Article Id: D-281 | Page : 397-404
Citation :- Detection of Heterozygosity and Allelic Frequency of Indian and Southeast Asian Types of Oecophylla smaragdina (Fabricius) (Hymenoptera, Formicidae) in Bangladesh using Microsatellite Markers.Agricultural Science Digest.2021.(41):397-404
Md Mamunur Rahman, Shingo Hosoishi, Kazuo Ogata mamunur111@gmail.com
Address : Department of Entomology, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh. 
Submitted Date : 22-05-2020
Accepted Date : 26-11-2020

Abstract

Background: The two types of Asian weaver ant species, Oecophylla smaragdina, Indian types and Southeast (SE) Asian types can co-occur in the same habitat. Previous study on mtDNA based phylogenesis of O. smaragdina in Bangladesh has revealed the presence of the mixture of both Indian and SE Asian type of O. smaragdina. However, the nuclear DNA based study showed some inconsistency leading the chance of hybridization as colonies encountered from two localities contained O. smaragdina workers from more than one type as identified via longwave length rhodopsin (LWRh) and mitochondrial COI and Cytb gene analysis. The purpose of present study was to detect hybridization status and to find out the identical allele for Indian and SE Asian type of O. smaragdina from different colonies.  
Method: A total of seven O. smaragdina colonies had been collected from Bangladesh during 2013 to December 2016. Microsatellite analysis were performed for Gene mapping and heterozygosity study with 11 microsatellite loci through electropherogrum study generated by peak scanner software.
Result: Among 11 microsatellite loci, two loci, MS 8.24 and MS 6.45 provided the identical allele position for Indian and SE Asian types while no allelic position were identified with nine microsatellite loci. The results inferred that weaver ant of both Indian and SE Asian type engage in bidirectional interspecific gene flow. The strong possibility of hybridization between these two types is inferred, which indicates that barriers to hybridization do not exist or can be completely overcome. This is unexpected, given that they are non-sister species and broadly sympatric in nature. These findings also indicate the possible occurrence of hybrid-hybrid crosses in some localities of weaver ant, a phenomenon rarely observed in ants. 

Keywords

Heterozygosity Identical allele Microsatellite markers Mitochondrial DNA Nuclear DNA Oecophylla smaragdina

References

  1. Ascher, J.S., Danforth, B.N. and Ji, S. (2001). Phylogenetic utility of the major opsin in bees (Hymenoptera: Apoidea): A reassessment. Molecular Phylogenetic Evolution. 19: 76-93. doi:10.1006/mpev.2001.0911.
  2. Azuma, N., Kikuchi, T., Ogata, K. and Higashi, S. (2002). Molecular phylogeny among local populations of weaver ant Oecophylla smaragdina. Zoological Science. 19: 1321-1328. doi:10.2108/zsj.19.1321.
  3. Azuma, N., Takahashi, J., Higashi, S., Sasaki, M. (2004). Microsatellite loci for the weaver ant Oecophylla smaragdina. Mol. Ecol. Notes. 4. 608-610. doi:10.1111/j.1471-8286.2004.00752.x.
  4. Azuma, N., Ogata, K., Kikuchi, T. and Higashi, S. (2006). Phylogeography of Asian weaver ants, Oecophylla smaragdina. Ecological Research. 21: 126-136. doi:10.1007/s11284-005-0101-6.
  5. Beukeboom, L.W., Zwaan, B.J. (2005). Genetics. In: Insects as Natural Enemies: a Practical Perspective. [Jervis M.A. (eds)]. Springer. pp. 167-218.
  6. Blaimer, B.B. (2012). Taxonomy and species-groups of the subgenus Crematogaster (Orthocrema) in the Malagasy region (Hymenoptera, Formicidae). Zookeys. 199: 23-70. doi:10.3897/zookeys.199.2631.
  7. Bolton, B. (1995). A new general catalogue of the ants of the world. Harvard University Press, London.
  8. Cameron, S.A. and Williams, P.H. (2003). Phylogeny of bumble bees in the New World subgenus Fervidobombus (Hymenoptera: Apidae): Congruence of molecular and morphological data. Molecular Phylogenetic Evolution. 28: 552-563. doi:10.1016/S1055-7903(03)00056-3.
  9. Chakraborty, D., Ramakrishnan, U., Panor, J., Mishra, C. and Sinha, A. (2007). Phylogenetic relationships and morphometric affinities of the Arunachal macaque Macaca munzala, a newly described primate from Arunachal Pradesh, northeastern India. Molecular Phylogenetic Evolution. 44: 838-849. doi:10.1016/j.ympev.2007.04.007.
  10. Crozier, R.H. and Crozier, Y.C. (1993). The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics. 133: 97-117. doi:10.1111/j.1365-2583.1993.tb00131.x.
  11. Crozier, R.H., Dobric, H.T., Graur, D., Corneut, J.M. and Taylor, R.W.(1994). Mitochondrial DNA sequence evidence on the phylogeny of Australian Jack-jumper ants of Myrmecia pilosula complex. Molecular Phylogenetic Evolution. 4(1): 20-30.
  12. Dlussky, G.M., Wappler, T., Wedmann, S. (2008). New middle Eocene formicid species from Germany and the evolution of weaver ants. Acta Palaeontol. Pol. 53: 615-626. doi:10.4202/app.2008.0406.
  13. Eto, K., Matsui, M. and Sugahar, T. (2013). Discordance between mitochondrial DNA genealogy and nuclear DNA genetic structure in the two morphotypes of Rana tagoi tagoi (Amphibia: Anura: Ranidae) in the Kinki Region, Japan. Zoological Science. 30(7): 553-558. doi:10.2108/    zsj.30.553.
  14. Goodman, S.J., Barton, N.H., Swanson, G., Abernethy, K., and Pemberton, J.M. (1999). Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics. 152: 355-371.
  15. Hancock, J.M., Simon, M. (2005). Simple sequence repeats in proteins and their significance for network evolution. Genetics. 345: 113-118.
  16. Helms Cahan, S. and Keller, L. (2003). Complex hybrid origin of genetic caste determination in harvester ants. Nature. 424: 306-309.
  17. Karanth, K.P., Singh, L., Collura, R.V. and Stewart, C.B. (2008). Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae). Molecular Phylogenetic Evolution. 46: 683-694. doi: 10.1016/j.ympev.2007.11.026.
  18. Loxdale, H.D. and Lushai, G. (1998). Molecular markers in entomology. Bulletin of Entomological Research. 88: 577-600.
  19. Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology and Evolution. 20: 229-237.
  20. Mardulyn, P. and Cameron, S.A. (1999). The Major Opsin in Bees (Insecta: Hymenoptera): A promising nuclear gene for higher level phylogenetics. Molecular Phylogenetic Evolution. 12: 168-176. doi:10.1006/mpev.1998.0606.
  21. Pusch, K., Heinze, J., Foitzik, S. (2006). The influence of hybridization on colony structure in the ant species Temnothorax nylanderi and T. crassispinus. Insectes Soc. 53: 439-445. doi:10.1007/s00040-005-0891-8.
  22. Rahman, M.M., Hosoishi, S. and Ogata, K. (2017b). Phylogenetic analysis reveals the overlapping distribution of the Indian and southeast Asian clades of Oecophylla smaragdina (Fabricius). Journal of the Faculty of Agriculture, Kyushu University, 62: 429-434.
  23. Rahman, M.M., Hosoishi, S. and Ogata, K., (2017a). Phylogenetic position of the western Bangladesh populations of weaver ant, Oecophylla smaragdina (Fabricius) (Hymenoptera, Formicidae). Sociobiology. 64: 437. doi:10.13102/sociobiology.v64i4.1153.
  24. Rahman, M.M., Hosoishi, S. and Ogata, K. (2020). Discordance between mitochondrial and nuclear DNA genes suggests the possibility of hybridization of Indian and southeast Asian types of Oecophylla smaragdina (Fabricius) (Hymenoptera, Formicidae) in Bangladesh. Indian Journal of Agricultural Research (In press).
  25. Roos, C., Zinner, D., Kubatko, L.S., Schwarz, C., Yang, M., Meyer, D., Nash, S.D., Xing, J., Batzer, M.A., Bremeier, M., Leendertz, F.H., Ziegler, T., Perwitasari-Farajallah, D., Nadler, T., Walter, L. and Oshtorholz, M. (2011). Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evolutionary Biology. 11: 77. doi:10.1186/1471-2148-11-77.
  26. Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Stauffer, C., Christian, E. and Crozier, R.H. (2010). Integrative taxonomy: a multi-source approach to exploring biodiversity. Annual Review of Entomology. 55: 421-438.
  27. Vidya, T.N., Sukumar, R., Melnick, D.J.(2009). Range-wide mtDNA phylogeography yields insights into the origins of Asian elephants. Proc Biol Sci. 276: 893-902. doi:10.1098/rspb.2008.1494.
  28. Wetterer, J.K. (2017). Geographic distribution of the weaver ant Oecophylla smaragdina. Asian Myrmecology. 9: 1-12. doi:10.20362/am.009004. 

Global Footprints