The Tunisian Barbary Sheep: Correlations among Morphometric Traits in Purebred Ewes Maintained under Arid Conditions

DOI: 10.18805/ag.D-250    | Article Id: D-250 | Page : 225-230
Citation :- The Tunisian Barbary Sheep: Correlations among Morphometric Traits in Purebred Ewes Maintained under Arid Conditions.Agricultural Science Digest.2021.(41):225-230
Sami Megdiche, Mohamed Ben Hamouda megdichesami@hotmail.fr
Address : Département des Ressources Animales, Agroalimentaire et Développement Rural, Université de Sousse, Institut Supérieur Agronomique de Chott-Mariem, 47, 4042, Sousse, Tunisia.
Submitted Date : 30-03-2020
Accepted Date : 10-08-2020

Abstract

Background: The fat-tailed Barbary sheep are the main breed of Tunisia and their morphometry has not been deeply investigated. This study aims to estimate the degree of relationship between eight quantitative measures across eight age classes, from one to eight years.  
Methods: Pearson’s product-moment was calculated to evaluate the correlation among eight morphological measures, collected from 249 purebred Tunisian Barbary ewes reared under arid climate. 
Result: The magnitude of pairwise phenotypic correlation among morphological traits showed a strong positive correlation (r = 0.84, P ˂ 0.001) between the shoulder and rump height at 6-7 years. The body weight was highly correlated to the height at rump during the first five years of age, whereas, it becomes more correlated to the heart girth when the ewe reaches its heavyweight at 5-6 years and older. The results of this study indicated that the rump height is the most correlated parameter to BW during the early life of this fat-tailed breed and are encouraging to fit live body weight from morphometric traits with accuracy.

Keywords

Barbary breed Ewe Fat-tailed sheep Morphometric traits Phenotypic correlation Tunisia

References

  1. Atti, N. and Ben Hamouda, M. (2004). Relationships among carcass composition and tail measurements in fat-tailed Barbarine sheep. Small Ruminant Research. 53: 151-155. DOI: 10.1016/j.smallrumres.2003.08.016.
  2. Atti, N. and Bocquier, F. (1999). Adaptation des brebis Barbarine à l’alternance sous-nutrition-réalimentation/ : effets sur les tissus adipeux. Annales de Zootechnie. 48(3): 189-198.
  3. Atti, N., Bocquier, F. and Khaldi, G. (2004). Performance of the fat-tailed Barbarine sheep in its environment: adaptive capacity to alternation of underfeeding and re-feeding periods. Animal Research. 53: 165-176. DOI: 10.1051/animres: 2004012.
  4. Bakhshalizadeh, S., Hashemi, A., Gaffari, M., Jafari, S. and Farhadian, M. (2016). Estimation of genetic parameters and genetic trends for biometric traits in Moghani sheep breed. Small Ruminant Research. 134: 79-83. DOI: 10.1016/j.small rumres. 2015.12.030.
  5. Cheverud, J.M. (1988). A comparison of genetic and phenotypic correlations. International Journal of Organic Evolution. 42(5): 958-968. DOI: 10.1111/j.1558-5646.1988.tb02 514.x.
  6. ÇiLek, S. and Petkova, M. (2016). Phenotypic correlations between some body measurements and prediction of body weight of Malya sheep. Bulgarian Journal of Agricultural Science. 22: 99-105.
  7. Douet, V., Chang, L., Cloak, C. and Ernst, T. (2014). Genetic influences on brain developmental trajectories on neuroimaging studies: from infancy to young adulthood. Brain Imaging and Behavior. 8(2): 234-250. DOI: 10.1007/s11682-013-9260-1.
  8. Ermias, E. and Rege, J.E.O. (2003). Characteristics of live animal allometric measurements associated with body fat in fat-tailed sheep. Livestock Production Science. 81(2): 271-281. DOI: 10.1016/S03016226(02)00256-7.
  9. Evans, J.D. (1996). Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing Company.
  10. FAO. (2012). Phenotypic characterization of animal genetic resources. FAO Animal Production and Health Guidelines No. 11. Rome.
  11. Fourie, P.J., Neser, F.W.C., Olivier, J.J. and van der Westhuizen, C. (2002). Relationship between production performance, visual appraisal and body measurements of young Dorper rams. South African Journal of Animal Science. 32(4): 256-262.
  12. Ghavi Hossein-Zadeh, N. and Ghahremani, D. (2017). Bayesian estimates of genetic parameters and genetic trends for morphometric traits and their relationship with yearling weight in Moghani sheep. Italian Journal of Animal Science. 17(3): 586-592. DOI: 10.1080/1828051X.2017. 1403296.
  13. Hamouda, M.B. and Atti, N. (2011). Comparison of growth curves of lamb fat tail measurements and their relationship with body weight in Babarine sheep. Small Ruminant Research. 95(2): 120–127. DOI: 10.1016/j.smallrumres.2010.10.001.
  14. Harrell Jr, F.E. and with contributions from Charles Dupont and many others. (2018). Hmisc: Harrell Miscellaneous. Available: https://CRAN.R-project.org/package=Hmisc.
  15. Jafari, S. and Hashemi, A. (2014). Estimation of genetic parameters for body measurements and their association with yearling liveweight in the Makuie sheep breed. South African Journal of Animal Science. 44: 140-147. DOI: 10.4314/sajas.v44i2.6.
  16. Janssens, S. and Vandepitte, W. (2004). Genetic parameters for body measurements and linear type traits in Belgian Bleu du Maine, Suffolk and Texel sheep. Small Ruminant Research. 54: 13–24. DOI: 10.1016/j.smallrumres.2003.10.008.
  17. Khaldi, Z., Haddad, B., Souid, S., Rouissi, H., Ben Gara, A. and Rekik, B. (2011). Caractérisation phénotypique de la population ovine du sud ouest de la Tunisie. Animal Genetic Resources. 49: 1–8. DOI: doi:10.1017/S2078 633611000361.
  18. Khan, K.M., Kumar, N., Chakraborty, D., Faried, I., Sharma, R., Bhatt, S.N., Kumar, D. and Taggar, R.K. (2016). Phenotypic characterization of Purky sheep population of Kargil district. Indian Journal of Animal Research. 51(4): 625-629. DOI: 10.18805/ijar.v0i0f.3794.
  19. Kiyanzad, M.R. (2004). Using linear body measurements of live sheep to predict carcass characteristics for two Iranian fat-tailed sheep breeds. Asian-Australasian Journal of Animal Sciences. 17: 693–699. DOI: 2004.17.5.693.
  20. Kumar, S., Dahiya, S.P., Malik, Z.S. and Patil, C.S. (2017). Prediction of body weight from linear body measurements in sheep. Indian Journal of Animal Research. 52(9): 1263–1266. DOI: 10.18805/ijar.B-3360.
  21. Kunene, N.W., Nesamvuni, A.E. and Nsahlai, I.V. (2009). Determination of prediction equations for estimating body weight of Zulu (Nguni) sheep. Small Ruminant Research. 84: 41–46. DOI: 10.1016/j.smallrumres.2009.05.003.
  22. Legaz, E., Cervantes, I., Pérez-Cabal, M.A., de la Fuente, L.F., Mártinez, R., Goyache, F. and Gutiérrez, J.P. (2011). Multivariate characterisation of morphological traits in Assaf (Assaf.E) sheep. Small Ruminant Research. 100: 122–130. DOI: 10.1016/j.small rumres.2011.06.005.
  23. Lynch, M. (1999). Estimating genetic correlations in natural populations. Genetics Research. 74: 255–264. DOI: 10.1017/S0016 672399004243.
  24. Mavule, B.S., Muchenje, V., Bezuidenhout, C.C. and Kunene, N.W. (2013). Morphological structure of Zulu sheep based on principal component analysis of body measurements. Small Ruminant Research. 111: 23–30. DOI: 10.1016/j.smallrumres.2012.09.008.
  25. Maylinda, S. and Busono, W. (2019). The accuracy of body weight estimation in Fat Tailed Sheep based on linear body measurements and tail circumference. Jurnal Ilmu-Ilmu Peternakan. 29(2): 193–199. DOI: 10.21776/ub.jiip.2019. 029.02.11.
  26. Özen, D., Kocakaya, A., Ünal, N. and Özbeyaz, C. (2019). A recursive path model for estimation of the live weight using some body measurements in Awassi sheep. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 66: 303–310. DOI: 10.33988/auvfd.512959.
  27. R Core Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/.
  28. Sankhyan, V., Thakur, Y.P., Katoch, S., Dogra, P.K. and Thakur, R. (2017). Morphological structuring using principal component analysis of Rampur-Bushair sheep under transhumance production in western Himalayan region, India. Indian Journal of Animal Research. 52(6): 917–922. DOI: 10.18805/ijar.B-3296.
  29. Searle, S.R. (1961). Phenotypic, Genetic and Environmental Correlations. Biometrics. 17(3): 474–480. DOI: 10.2307/2527838.
  30. Shirzeyli, F.H., Lavvaf, A. and Asadi, A. (2013). Estimation of body weight from body measurements in four breeds of Iranian sheep. Songklanakarin Journal of Science and Technology. 35(5): 507–511.
  31. Silva, M.C., Lopes, F.B., Vaz, C.M.S., Paulini, F., Montesinos, I.S., Fioravanti, M.C.S., McManus, C. and Sereno, J.R.B. (2013). Morphometric traits in Crioula Lanada ewes in Southern Brazil. Small Ruminant Research. 110: 15–19. DOI: 10.1016/j.smallrumres.2012.09.002.
  32. Sodini, S.M., Kemper, K.E., Wray, N.R., Trzaskowski, M. (2018). Comparison of genotypic and phenotypic correlations: Cheverud’s conjecture in humans. Genetics. 209: 941-948. DOI: 10.1534/genetics.117.300630.
  33. Topai, M. and Macit, M. (2004). Prediction of body weight from body measurements in Morkaraman sheep. Journal of Applied Animal Research. 25(2): 97–100. DOI: 10.1080/09712119.2004.9706484.
  34. Važiæ, B., Rogic, B., Driniæ, M. and Savic, N. (2017). Morphometric measurements as part of the genetic characterization of indigenous strain Kupreška Pramenka. Biotechnology in Animal Science. 33: 55–64. DOI: 10.2298/BAH1701055V.
  35. Worku, A. (2019). Body weight had highest correlation coefficient with heart girth around the chest under the same farmers feeding conditions for Arsi Bale sheep. International Journal of Agricultural Science and Food Technology. 5: 6–12. 

Global Footprints