Agricultural Science Digest

  • Chief EditorArvind kumar

  • Print ISSN 0253-150X

  • Online ISSN 0976-0547

  • NAAS Rating 5.52

  • SJR 0.156

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Science Digest, volume 41 issue 2 (june 2021) : 313-318

Genetic Diversity of Endophytic Bacillus strains (101 and 201) Isolated from Native Neem (Azadirachta indica L.) Plants of West Malaysia

Vithiya Yoganathan, Kartikeya Tiwari
1Department of Microbiology, International Medical School, Management and Science University, Shah Alam-40100, Selangor, Malaysia.
Cite article:- Yoganathan Vithiya, Tiwari Kartikeya (2021). Genetic Diversity of Endophytic Bacillus strains (101 and 201) Isolated from Native Neem (Azadirachta indica L.) Plants of West Malaysia. Agricultural Science Digest. 41(2): 313-318. doi: 10.18805/ag.D-241.
Background: A large number of bioactive compounds are produced by neem tree (Azadirachta indica). The association between the neem tree and endophytes is not well explored in West Malaysia. Endophytes are the organisms that live inside the medicinal plants and produce bioactive compounds of medicinal importance. The present research work has been carried out to harness significant biocontrol activity showing endophytic bacterial strains. 
Methods: Screening for bacterial endophytes was performed by using surface sterilisation method. Sterile explants were placed on nutrient agar plates and incubated at 37oC. Plates were observed for the presence of endophytes surrounding the explants. The bacterial endophytes were identified microscopically by Gram staining protocol and molecular characterization was performed by amplification of 16 S rRNA and sequencing. 
Result: Twelve endophytic bacterial strains isolated in which, only two bacterial strains were found significant in terms of bio-control activity. Therefore, these two bacterial strains were selected for further study. The 16S rRNA amplification and phylogenetic tree construction of endophytic bacterial strains (101 and 201) confirmed that these bacterial strains are closest with Bacillus cereus and Bacillus megaterium strains. 
  1. Aktar, M.W., Sengupta, D., Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology. 2(1): 1-12.
  2. Bahgat, M.H, El-Mous, M.M., Kawashty, S.A., Mohammed, El-N-A. (2014). Characterization of endophytic bacteria isolated from the medicinal plant Capparis sinaica veill and analyze its bioactive flavonoid. Indian Journal of Applied Research. 4(11): 5-13.
  3. Chen, F., Gao, Y., Chen, X., Yu, Z., Li, X. (2013). Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. International Journal of Molecular Science. 14: 17477-17500.
  4. Chinnaswamy, A., Pueyo, J.J., Lucas, M.M., Rincon, A., Bravo, J., Rojo, D., Stoll, A., Pena, T. (2018). A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Annals of Applied Biology. 172(3): 295-308.
  5. Dudeja, S.S., Giri, R., Saini, R., Suneja-Madan, P., Kothe, E. (2012). Interaction of endophytic microbes with legumes. Journal of Basic Microbiology. 52: 248-260.
  6. Ferriera, P.E.M., Leite, G.L., Polanczyk, A. R., Suzuki, T.M., Freitas, De, P.R., Bueno, da S.N.R., Dasilva, A.S.R. (2017). Two methods for isolation of endophytic and edaphic Bacillus sp. from sugarcane fields. Agricultural Microbiology. 84: 1-7.
  7. Hazarika, D.J., Goswami, G., Gautom, T., Praveen, A., Das, P., Barooah, M., Boro, R.C. (2019). Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiology. 19(71): 1-13. doi: 10.1186/s12866-019-1440-8.
  8. Kannan, R., Damodaran, T., Nagaraja, A., Umamaheswari, S. (2018). Salt tolerant polyembryonic mango root stock (ML-2 and GPL-1): A putative role of endophytic bacteria by using BOX-PCR. Indian Journal of Agricultural Research. 52(4): 419-423.
  9. Lopes, R., Tsui, S., Goncalves, P.J.R.O., Queiroz, M.V.D. (2018). A look into a multifunctional tool box: endophytic Bacillus species provide broad and underexploited benefits for plants. World Journal of Microbiology and Biotechnology. 34(94): 1-10. doi: 10.1007/s11274-018-2479-7.
  10. Mardanova, A.M., Hadieva, G.F., Lutfullin, M.T., Khilyas, I.V., Minnullina, L.F., Gilyazeva, A.G., Bogomolnaya, L.M., Sharipova, M.R. (2017). Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agricultural Sciences. 8: 1-20.
  11. Noorzaid, M., Mona, R., Lathif, N.A., Firdous, J. (2019). Endophytic bacteria and their potential application in agriculture: A review. Indian Journal of Agriculture Research. 53(1): 1-7.
  12. Pratiwi, H.R., Hidayat, I., Hanafi, M., Mangunwardoyo, W. (2016). Identification and characterization of three endophytic bacteria from Neesia altissima (Malvaceae) antagonistic to diarrhea-causing bacteria. Malaysian Journal of Microbiology. 2(4): 300-307.
  13. Rosenblueth, M., Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions. 19(8): 827-837.
  14. Ryan, R.P., Germaine, K., Franks, A., Ryan, J.D., Dowling, D.N. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters. 278(1): 1-9.
  15. Sekar, J., Prabavathy, V.R. (2014). Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity. FEMS Microbial Ecology. 89: 39-42.
  16. Sharma, T., Kaul, S., Dhar, M.K. (2015). Diversity of culturable bacterial endophytes of saffron in Kashmir, India. 4(661): 1-13. doi:10.1186/s40064-015-1435-3.
  17. Singh, A.K., Sharma, R.K., Sharma, V., Singh, T., Kumar, R., Kumari, D. (2017). Isolation, morphological identification and in vitro antibacterial activity of endophytic bacteria isolated from Azadirachta indica (neem) leaves. Veterinary World. 10(5): 510-516. doi:10.14202/vetworld.2017.510-516.
  18. Strobel, G., Daisy, B., Castillo, U., Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products. 67: 257-268.
  19. Suneja, P., Maheshwari, R., Bhutani, N. (2018). Isolation and characterization of plant growth promoting endophytic bacteria isolated from Vigna radiata. Indian Journal of Agricultural Research. 52(6): 596-603.
  20. Tiwari, K., Thakur, H. (2014). Diversity and molecular characterization of dominant Bacillus amyloliquefaciens (JNU-001) endophytic bacterial strains isolated from native neem varieties of Sanganer Region of Rajasthan. Journal of Biodiversity Bioprospecting and Development. 1(1): 1-5.
  21. Wei, G., Yang, W., Deng, Z., Sun, R., Xu, Y., Zhao, L. (2011). Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain MQ23 isolated from Sophora alopecuroides root nodules. Brazilian Journal of Microbiology. 42: 567-575.
  22. Xu, J-X., Li, Z-Y., Lv, X., Yan, H., Zhou, G-Y., Cao, L-X., et al. (2020). Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization. PLoS ONE 15(4): e0232096.
  23. Yan, S-Z., Hu, H-J., Chen, Y-L., Wang, Y-F., Tang, Y-Y., Chen, S-L. (2017). Endophytic Bacillus cereus effectively controls meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant Disease. 101(3): 448-455.

Editorial Board

View all (0)