Agricultural Science Digest

  • Chief EditorArvind kumar

  • Print ISSN 0253-150X

  • Online ISSN 0976-0547

  • NAAS Rating 5.52

  • SJR 0.156

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Science Digest, volume 39 issue 4 (december 2019) : 347-352

Immunological Effects of a Single Dose of PLGA Nanoparticles Encapsulated Peptide in Broilers in Comparison to Traditional Vaccines against Infectious Bursal Disease

S.H. Al-Rubaee, T.S. Al-Azawi, A.A. Taha
1Ministry of Science and Technology, Department of Agricultural Research/ Iraq.
Cite article:- Al-Rubaee S.H., Al-Azawi T.S., Taha A.A. (2019). Immunological Effects of a Single Dose of PLGA Nanoparticles Encapsulated Peptide in Broilers in Comparison to Traditional Vaccines against Infectious Bursal Disease. Agricultural Science Digest. 39(4): 347-352. doi: 10.18805/ag.D-171.
Infectious bursal disease is a viral poultry disease that causes economic losses. This study aimed to evaluate the white blood cells count (WBCs count), differential count, antibody (Ab) titration against IBDV and interferone gamma (INF-ã) responses in broiler administered traditional and prepared nanovaccines. A total of 98 broiler chicks (Ross 308) were used to evaluate the immunological responses. They were devided into G1(Control); G2- (Traditional vaccine); G3(PLGA nanoparticle); G4(160 µg of peptide loaded  PLGA); G5 (80 µg of peptide loaded  PLGA);  G6(40 µg of peptide loaded  PLGA) and G7(20 µg of peptide loaded  PLGA) by oral administration. At day 19 of broiler age, the chicken was administered orally with traditional and prepared nanovaccines and the blood was collected for Ab titration at day 10(for maternal immunity), day 29 and day 42 of broiler age. At the end of experiment, whole blood was collected for WBCs and differential count and for INF-ã level. The results indicated that there were no significant (pe” 0.05) differences among experimental groups in WBCs count while there were significant p d”0.05) increase in lymphocyte count in G3 (NPs) in compared with G2( traditional vaccine). Also there was a significant (p d”0.05) increase in heterophil count in G4 (NPs + 160µg peptide) as compared to control. For Ab titration ,at day 29 , data indicated significant ( p d”0.05) increase in G3 and G7 as compared to G2 while at day 42, there was a significant ( p d”0.05) increase in each of G3,G4,G5 and G6 groups in compared to control and traditional vaccine. For INF-ã level, G4 recorded significantly (p d”0.05) the highest level as compared to other groups. These immunological responses were explored in order to evaluate the prepared nanovaccine for IBD in broiler.
  1. Ayari-Riabi, S. (2016). Venom conjugated polylactide applied as a biocompatible material for passive and active immunotherapy against scorpion envenomation. Vaccine. 34: 1810–1815.
  2. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol (2010) 10(11): 787–96.
  3. Binjawadagi, B., Dwivedi, V., Manickam, C., Ouyang, K., Wu, Y., Lee, L.J., Torrelles, J.B. and Renukaradhya, G.J. (2014). International Journal of Nanomedicine. 9: 679–694.
  4. Bolhassani,A.; Javanzad,S.; Saleh,T.; Hashemi,M.; Aghasadeghi,M.R.; and Sadat,S.M.(2014). Polymeric nanoparticles Potent vectors for vaccine delivery targeting cancer and infectious diseases. Human Vaccines & Immunotherapeutics 10(2): 321–332.
  5. Carballedaa,J.M.; Zotha,S.C.; Gomeza,E.; Gravisacoa,M.J.; Berinsteina, A.(2011). Activation of the immune response against Infectious Bursal Disease Virus after intramuscular inoculation of an intermediate strain. Immunobiology. 216: 1028– 1033.
  6. Champion, C.I., Kickhoefer, V.A., Liu, G., Moniz, R.J., Freed, A.S., Bergmann, L.L., et al. (2009). ‘‘A vault nanoparticle vaccine induces protective mucosalimmunity’’, PLoS ONE. 4(4): Art. no. e5409.
  7. Chattopadhyay,S.; Chen,J.Y.; Chen, H.W.; Hu,C.M.(2017). Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics; 1(3): 244-260.
  8. Du,J.; Zhang,Y.S.; Hobson,D.; Hydbring,P. (2017): Nanoparticles for immune system targeting. Drug Discov Today, http:// dx.doi.org/10.1016/j.drudis.2017. 03.013.
  9. El Naggar HM, Madkour MS, Hussein HA (2017). Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses, Veterinary World. 10(2): 187-193.
  10. Fifis, T., Mottram, P., Bogdanoska, V., Hanley, J. and Plebanski, M. (2004). ‘‘Short peptide sequences containing MHC class I and/or class II epitopes linked to nano-beads induce strong immunity and inhibition of growth of antigen-specific tumour challenge in mice’’. Vaccine, 23(2): pp. 258–266.
  11. Fredriksen BN, Grip J. (2012). PLGA/PLA micro- and nanoparticle formulationsserve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine. 30: 656–67.
  12. Frucht, D. M., Fukao, T., Bogdan, C., Schindler, H., O’Shea, J. J., Koyasu, S. (2001). IFN-gamma production by antigen-    presenting cells: mechanisms emerge. Trends Immunol. 22: 556–560.
  13. Gao,L.;Qi,X;Li,K.;Gao,H.;Gao,Y.;Qin,L.;Wang,Y.;andWang,X.(2011). Development of a tailored vaccine against challenge with very virulent infectious bursal disease virus of chickens using reverse genetics. Vaccine. 29: 5550– 5557.
  14. Gill, P. (2013): Nanocarriers, nanovaccines, and nanobacteria as nanobiotechnological concerns in modern vaccines. Scientia Iranica F. 20(3): 1003–1013.
  15. Gutierro, I., Hernandez, R.M, Igartua, M., Gascon, A.R. and Pedraz, J.L. 2002. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine. 21: 67-77.
  16. Harris, D. P., Haynes, L., Sayles, P. C., Duso, D. K., Eaton, S. M., Lepak, N. M., Johnson, L. L., Swain, S. L., Lund, F. E. (2000). Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 1: 475–482.
  17. He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. (2016) 41:1012–21.
  18. Hsu SH, Chan SH, Chiang CM, Chen CC, Jiang CF. (2011): Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials. 32(15):3764–3775/
  19. Hu, C. H., L. Y. Gu, Z. S. Luan, J. Song, and K. Zhu. (2012). Effects of montmorillonite-zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim. Feed Sci. Technol. 177:108-115.
  20. Jahan, S.T.; Sadat, S.M.; Haddadi, A. (2018). Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine. International Journal of Nanomedicine. 13: 367–386.
  21. Kennedy, L.C., Bickford, L.R., Lewinski, N.A., Coughlin, A.J., Hu, Y., Day, E.S.,West, J.L. and Drezek, R.A. (2011). ‘‘A new era for cancer treatment: goldnanoparticle-mediated thermal therapies’’. Small. 7(2): pp. 169–183
  22. Krucinska,I; Zywicka, B; Komisarczyk,A.; Szymonowicz,M.; Kowalska,S.; Zaczynska,E.; Struszczyk,M.; Czarny,A.; Jadczyk,P.; Uminska-Wasiluk ,B.; Rybak,Z.; and Kowalczuk,M.(2017): Biological Properties of Low-Toxicity PLGA and PLGA/    PHB Fibrous Nanocomposite Implants for Osseous Tissue Regeneration. Part I: Evaluation of Potential Biotoxicity. Molecules, 22: 2092.
  23. Kumar, V (2014). Chitosan Coated Plg Nanoparticles as Delivery System for Infectious Bursal Disease Viral Antigens. PhD Thesis, Deemed University Indian Veterinary Research Institute, Izatnagar - 243 122 (U.P.), India.
  24. Mamo T, Poland GA. (2012). Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine. 30: 6609–11.
  25. McCall,R. and Sirianni,R.(2013): PLGA Nanoparticles Formed by Single- or Double-emulsion with Vitamin ETPGS. Journal of Visualized Experiments. 82:1-8.
  26. Mozafari, M.R., Pardakhty, A., Azarmi, S., Jazayeri, J.A., Nokhodchi, A. and Omri, A. (2009). ‘‘Role of nanocarrier systems in cancer nanotherapy’’, J. Liposome Res. 19(4). pp. 310–321.
  27. Noh, Y.W. (2013). Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew. Chem. Int. Ed. Engl. 52: 7684–7689.
  28. Pachioni-Vasconcelos Jde A, Lopes AM, Apolinario AC, Valenzuela- Oses JK, Costa JS, Nascimento Lde O, (2016). Nanostructures for protein drug deliver. Biomater Sci. 4: 205–18.
  29. Peek, L.J.; Middaugh,C.R.; and Berkland,C. (2008). Nanotfchnologyin vaccine delivary. Advanced drug delivary review. 60: 915-928.
  30. Peleteiro M.; Presas E.; González- Aramundiz JV. Sánchez-Correa B.; Simón-Vázquez R.; Csaba N.; Alonso MJ. and González- Fernández Á (2018). Polymeric Nanocapsules for Vaccine Delivery: Influence of the Polymeric Shell on the Interaction with the Immune System. Front. Immunol. 9:791.
  31. Pradhan,S.N.; Prince,P.R.; Madhumathi,J.; Arunkumar,C.; Roy,P.; Narayanan,R.B.;and Usha Antony (2014). DNA vaccination with VP2 gene fragment confers protection against Infectious Bursal Disease Virus in Chickens. Vet. Microbiol. VETMIC-6521; No. of Pages 10
  32. Praetorius, N.P. and Mandal, T.K. (2007). ‘‘Engineered nanoparticles in cancer therapy’’, Recent Pat. Drug Deliv. Formul. 1(1): pp. 37–51.
  33. Raghuvansi, R.S., Goyal, S., Singh O. and Panda, A.K. (2002). Formulation and characterization of immunoreactive tetanus toxoid biodegradable polymer particles. Drug deliv. 3: 113-120.
  34. Saif, Y. M. and; Eterradossi,N (2008). Infectious Bursal Disease.In “Diseases of Poultry”. 12th Edition, Ch.7, pp185-208, Blackwell Publishing,
  35. Saroja Ch, Lakshmi PK, Bhaskaran S. (2011). Recent trends in vaccine delivery systems: A review. Int J Pharm Investig 1: 64-74.
  36. SAS.2010.SAS/STAT Users Guide for Personal Computer. Release 9.13.SAS Institute, Inc., Cary, N.C., USA.
  37. Scharf B, Clement CC, Wu XX, Morozova K, Zanolini D, Follenzi A, et al. Annexin A2 binds to endosomes following organelle destabilization by particulate wear debris. Nat Commun. (2012) 3:755.
  38. Sen, G. C. (2001). Viruses and interferons. Annu. Rev. Microbiol. 55: 255–281.
  39. Seth,A.; Ritchie,F.K.; Wibowo,N.; Lua,L.H.; Middelberg,A.P.J.(2015). Non-Carrier Nanoparticles Adjuvant Modular Protein Vaccine in a Particle-Dependent Manner. Research Article, journal.pone:1-16.
  40. Shakya, A.K. and Nandakumar, K.S (2012). Applications of Polymeric Adjuvants in Studying Autoimmune Responses and Vaccination against Infectious Diseases. Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
  41. Thaiss, C.A. (2016). The microbiome and innate immunity. Nature 535: 65–74.
  42. Zhao K, Li GX, Jin YY (2010). Preparation and immunological effec­tiveness of a Swine influenza DNA vaccine encapsulated in PLGA microspheres. J Microencapsul. 27(2):178–186.
  43. Zhao,L.; Seth,A., Wibowo,N.; Zhao,C.; Mitter,N.; Yu,C.;and Middelberg, A. (2014). Nanoparticle vaccines. Vaccine 32: 327– 337.
  44. Zhu M,Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother. (2014)10: 2761–74.

Editorial Board

View all (0)