Expression of Estrogenic Response Genes in Black Mollies (Poecilia Sphenops) Exposed to Pyrogenic Hydrocarbon and Petroleum from Campeche Sound

DOI: 10.18805/ag.D-142    | Article Id: D-142 | Page : 100-104
Citation :- Expression of Estrogenic Response Genes in Black Mollies (Poecilia Sphenops) Exposed to Pyrogenic Hydrocarbon and Petroleum from Campeche Sound.Agricultural Science Digest.2020.(40):100-104
Maurilio Lara-Flores and Jaime Rendon von Osten maurilio_lara@yahoo.com.mx
Address : Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México de la Universidad Autónoma de Campeche. 
Submitted Date : 8-03-2019
Accepted Date : 19-10-2019

Abstract

The estrogenic effects of endocrine disrupting compounds (EDC´s) in animals are not reversible and can reduce populations. Sensitive methods such Q-PCR have been used to determine changes in gene expression and thus predict the effects before they become irreversible. The present study was designed to detect the expression on the estrogen receptors and vitellogenin genes in the Black Mollies fish (Poecilia sphenops) exposed to pyrogenic hydrocarbon and petroleum from Campeche Sound. The results indicate that the expression of transcript of the estrogen receptor and vitellogenin indicates are potentially useful as molecular biomarker for detecting the presence of endocrine-disruption compounds in environment.

Keywords

Black Mollies fish Endocrine Disrupting Compounds (EDC´s) Expression genes Petroleum hydrocarbon Pyrogenic hydrocarbon

References

  1. Carnevali, O., Tosti, L., Speciale, C., Peng, C. Zhu, Y., Maradonna, F. (2010). DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis. Plos One. 5: e10201.
  2. Iguchi, T., Sumi, M., Tanabe, S. (2002). Endocrine disruptor issues in Japan. Congenital Anomalies. 42: 106-119.
  3. Iguchi, T., Watanabe, H., Katsu, Y. (2007). Toxicogenomics and ecotoxicogenomics for studying endocrine disruption and basic biology. General Comparative Endocrinology. 153: 25-29.
  4. Ishibashi, H., Yamauchi, R., Matsuoka, M., Kim, J.-W., Hirano, M., Yamaguchi, A., Tominaga, N., Arizono, K. (2008). Fluorotelomer alcohols induce hepatic vitellogenin through activation of the estrogen receptor male medaka (Oryzias latipes). Chemosphere. 71: 1853-1859.
  5. Kabir, E.R., Rahman, M.S., Rahman, I. (2015). A review on endocrine disruptors and their possible impacts on human health. Environmental Toxicology and Pharmacology. 40: 241-258.
  6. Kenneth, J., Livak, T., Schmittegen, D. (2001). Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2DDCT method. Method. 25: 402-408.
  7. Kidd, K.A., Becher, G., Bergman, A., Muir, D.C.G., Woodruff, T.J. (2012). Human and wildlife exposure to EDC´s. In: Bergman, A., Heidel, J.J., Jöbling, S., Kidd, K.A., Zoeller, R.T. (Eds), State of the Science of Endocrine Disrupting Chemicals -2012. World Health Organization, UNEP, Switzerland, 189-250.
  8. Kitana, N., Won, S.J., Callard, S.J. (2007). Reproductive deficits in male freshwater turtle Chrysemys picta from Cape Cod, Massachusetts. Biology of Reproduction. 76: 346-352.
  9. Maradonna, F., Evangelisti, M., Gioacchini, G., Migliarini, B., Olivotto, I., Carnevalli, O. (2013). Assay of VTG, ERs and PPARs as endpoint for the rapid in vitro screening of the harmful effect of di-(2-ethylhexy)-phtalate (DEHP) and phtalic acid (PA) in zebrafish primary hepatocyte cultures. Toxicology In Vitro. 27: 84-91.
  10. Orlando, E., Davis, W., Guillete, L. (2002). Aromatase activity in the ovary and brain of the Eastern mosquito fish (Gambusia holbrooki) exposed to paper mill effluent. Environmental Health Perspective. 110: 429-433.
  11. Rendon von Osten J. (2009). Informe de análisis de hidrocarburos del petroleo en muestras de agua y sedimento procedentes de la zona de la plataforma Usumacinta, Golfo de México. 1st ed. Campeche, Mexico: Universidad Autónoma de Campeche 2009; 55-67.
  12. Rendon von Osten, J., Ortiz-Arana, A., Guillermina, L., Soares, A.M. (2005). In vivo evaluation of three biomarkers in the mosquito fish (Gambusia yucatana) exposed to pesticides. Chemosphere. 58: 627-636.
  13. Rochman, C.M., Hentsschel, B.T., Swee, J.T. (2014). Long-Term absorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. Plos One. 9: 1-10.
  14. Tarrant, A.M. (2005). Endocrine-like signalling in Cnidarioans: current understanding and implication for ecophysiology. Integrative and Comparative Biology. 45: 201-214.
  15. Uren-Webster, T.M., Lewis, C., Filby, A.L., Paull, G.C., Santos, E.M. (2010). Mechanisms of toxicity of di (2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquatic Toxicology. 99: 360-369.
  16. Wang, X., Yang, T., Zhang, K., Ma, Y., Han, J., Yang, L., Zhou, B. (2013). Endocrine disruption by di-(2-ethylhexyl)-phtalate in Chinese rare minnow (Gobiocypris rarus). Environmental Toxicology and Chemistry. 32: 1846-1854.
  17. Watanabe, H., Iguchi, T. (2003). Evaluation of endocrine disruptors based on gene expression using a microarray. Environmental Science. 10: 61-67.
  18. Watanabe, K.H., Li, Z., Kroll, K.J., Villenuve, D.L., Garcia-Reyero, N., Orlando, E.F., et al. (2009). A computational model of the hypothalamic-pituitary-gonadal axis in male fathead minnows exposed to 17 alpha-ethunylestradiol and 17 beta-estradiol. Toxicology Science and Technology. 35: 2909-2916. 

Global Footprints