Agricultural Science Digest

  • Chief EditorArvind kumar

  • Print ISSN 0253-150X

  • Online ISSN 0976-0547

  • NAAS Rating 5.52

  • SJR 0.156

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Science Digest, volume 32 issue 3 (september 2012) : 214-218

BIOSYNTHESIS PATHWAYS OF IAA PRODUCTION IN ACINETOBACTER HAEMOLYTICUS

S.D. Bhawsar*, S.D. Patil, B.A. Chopade
1Department of Microbiology University of Pune,Pune-411 007, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Bhawsar* S.D., Patil S.D., Chopade B.A. (2025). BIOSYNTHESIS PATHWAYS OF IAA PRODUCTION IN ACINETOBACTER HAEMOLYTICUS. Agricultural Science Digest. 32(3): 214-218. doi: .
Acinetobacter haemolyticus, A19 produced IAA in presence of different wheat root exudates and also in absence of standard precursor tryptophan in production medium. IAA production was increased with concentration of L-tryptophan from 50-200µg/ml in growth medium. However similar results were not obtained when indole, a structural analog of IAA was used as a precursor. HPLC analysis showed that using tryptophan and indole as precursors, IAA was synthesized by A19 by two possible routes via tryptamine and indole-3 acetonitrile as intermediates.
  1. Arshad, M. and Frankenberger, W.T. (1991). Microbial production of plant hormones. Pl. Soil. 133: 1-8.
  2. Bashan, Y., Singh, M. and Levanony, H. (1989). Contribution of Azospirillum brasilense Cd to the growth of tomato seedling is not through nitrogen fixation. Canadian J. Bot. 67: 2429-2444.
  3. Bar, T. and Okon, Y. (1993). Tryptophan conversion to indole-3 acetic acid via indole-3 acetamide in Azospirillum brasilense Sp7. Canadian J. Microbiol. 39: 81-86.
  4. Costacurta A. and Vanderleyden, J. (1995). Synthesis of phytohormones by plant associated bacteria. Crit. Rev. Microbiol. 21(1): 1-18.
  5. El-Khawas, H. and Adachi, K. (1999). Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol. Fert. Soils. 28(4): 377-381.
  6. Erdmann, N. and Schiewer, N. (1971).Tryptophan-dependent indoleacetic-acid biosynthesis from indole, demonstrated by double-labeling experiments. Planta. 97(2): 135-141.
  7. Gordon, S.A. and Weber, R.P. (1951). Colorimetric estimation of indole acetic acid. Pl. Physiol. 26: 192-195.
  8. Huddedar S.B., Shete, A.M., Tilekar, J.N., Dhavale, D.D., Gore, S.D. and Chopade, B.A. (2002). Isolation, characterization and plasmid pUPI126 mediated Indole-3-Acetic acid (IAA) production in Acinetobacter strains from rhizosphere of wheat. J. Appl. Biochem. Biotechnol. 102-103: 21-39.
  9. Khalid, A., Shermeen, T., Arshad, M. and Ahmed, Z. (2004). Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Austr. J. Soil Res. 42(8): 921-926.Kosuge, T., Heskett, M.G. and Wilson, E.E. (1965). Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. J. Biol. Chem. 241: 3738-3744.
  10. Libbert, E., Fischer, E., Drawert, A. and Schroder, R. (1970). Pathways of IAA production from tryptophan by plants and by their epiphytic bacteria: a comparison. II. Establishment of the tryptophan metabolites, effects of a native inhibitor. Physiol. Plant. 23: 278-286.
  11. Magie, A.R., Wilson, E.E. and Kosuge, T. (1963). Indole acetamide as an intermediate in the synthesis of indoleacetic acid in Pseudomonas savastanoi. Science. 141: 1281-1282.
  12. Patten, C.L. and Glick, B.R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian J. Microbiol. 42: 207-220.
  13. Perley, J. E. and Stowe, B. B. (1966). The production of tryptamine from tryptophan by Bacillus cereus (KVT). Biochem. J. 100: 169-174.
  14. Pilet, P.E. and Saugy, M. (1987). Effect on root growth of endogenous and applied IAA and ABA. Pl. Physiol. 83: 33-38.
  15. Robinson, M., Riov, J. and Sharon, A. (1998). Indole-3-Acetic Acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl. Environ. Microbiol. 64: 5030-5032.
  16. Subba Rao, N. S. (1986). The Rhizosphere: Soil Microorganisms and Plant Growth. Oxford and IBH Publication Co.Pvt.Ltd. New Delhi, India. 46-74.
  17. Yamada, T., Yunus, A., Murakami, Y., Nishino, T., Ichinose, Y., Shiraishi, T. and Toyoda K. (1998). Role of indoleacetic acid production in pathogens in the plant-microbe interaction. Appl. Environ. Microbiol. 64(12): 5030-5032.
  18. Zakharova, E.A., Shcherbakov, A. A., Brudnik, V. V., Skripko, N. G., Bulkhin, N. S. and Ignatov, V.V. (1999). Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. European J. Biochem. 259: 572-576.

Editorial Board

View all (0)