Agricultural Science Digest

  • Chief EditorArvind kumar

  • Print ISSN 0253-150X

  • Online ISSN 0976-0547

  • NAAS Rating 5.52

  • SJR 0.156

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Science Digest, volume 30 issue 3 (september 2010) : 192 - 196

ALLELOPATHIC POTENTIAL OF LUDWIGIA ADSCENDENS (L.) ON GERMINATION AND SEEDLING GROWTH OF GREENGRAM, VIGNA RADIATA (L.) CULTIVATED AFTER RICE

N. Roy, A. Barik*
1Ecology Research Unit, Department of Zoology University of Burdwan, Burdwan-713104, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Roy N., Barik* A. (2024). ALLELOPATHIC POTENTIAL OF LUDWIGIA ADSCENDENS (L.) ON GERMINATION AND SEEDLING GROWTH OF GREENGRAM, VIGNA RADIATA (L.) CULTIVATED AFTER RICE. Agricultural Science Digest. 30(3): 192 - 196. doi: .
Allelopathic potential of the rice field weed, water primrose Ludwigia adscendens (L.) leaf,
stem and leaf+stem on germination, root and shoot length, seedling vigour and vigour index of
the greengram [Vigna radiate (L.), cv.KB-54], was investigated in the laboratory. The different
concentrations (e.g. 5, 10, 20, 40, 60, 80 and 100%) of the aqueous extract of leaf stem and
leaf+stem of the weed parts were applied separately on greengram seeds in petri dishes lined
with filter paper. The per cent of germination decreased from 4–32%, 2-23% and 7–36%, and
root length and shoot length of the greengram also decreased from 0.01-2.04 cm, 0.02-1.96 cm
and 0.07-2.08, and 0.818-1.575 cm, 0.785-1.567 and 0.83-1.64 cm for increased concentrations
of the weed leaf, stem and leaf+stem extracts over control, respectively. The seedling vigour
and vigour index of the greengram were decreased considerably from 13.32-237.6, 8.14-221.9
and 28.14-244.36, and 85.68-166.62, 80.65-164.44 and 90.21-171.92 with increased
concentrations of different parts of aqueous extract of the weed over control, respectively
  1. Ashrafi, Z.Y. et al., (2008). J. Agric. Technol. 4(1): 219-229.
  2. Batish, D.R. et al., (2002). J. Agron. Crop Sci. 188: 19-24.
  3. Batlang, U and Shushu, D.D. (2007) J. Agron. 6 : 541-547.
  4. Bogatek, R. et al., (2006). Biol. Planta., 50 (1): 156-158.
  5. Chon, S. U. and Kim, J. D. (2000). J. Agron. Crop Sci. 188: 281-285.
  6. Economou, G. et al., (2002). Ecol. 17: 2021-2034.
  7. Inderjit, K. L. and Dakshini, K. M. M. (1995). Bot. Rev. 61: 28–44.
  8. Inderjit, K. L. and Duke, K. I. (2003). Planta 271: 529-539.
  9. Inderjit, K. L. and Keating, K. I. (1999). Adv. Agron. 67: 141-231.
  10. Isfahan, M. N. and Shariati, M. (2007). American-Eurasian J. Agric. & Environ. Sci. 2 (5): 534-538.
  11. Narwal, S. S. (1994). Allelopathy in Crop Production. Scientific Publishers, Jodhpur, India.
  12. Nawalesh, K. S. and Samar, J.S. (2004). Indian J. Plant Physiol. 9(3): 313-315.
  13. Nayek, T. K. and Banerjee, T. C. (1987). Entomophaga 32: 407-414.
  14. Wagu, A. and Ugborogho, R. E. (2000). Seed Sci. Technol. 28: 657-697.
  15. Young, G. P. and Bush, J. K. (2009). J. Chem. Ecol. 35: 74–80.

Editorial Board

View all (0)