Application of transgenic animals in animal production and health

DOI: 10.18805/ag.R-1782    | Article Id: R-1782 | Page : 169-174
Citation :- Application of transgenic animals in animal production and health.Agricultural Reviews.2018.(39):169-174

Sourabh Sulabh and Amit Kumar

Sourabh Sulabh and Amit Kumar
Address : Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India.
Submitted Date : 2-01-2018
Accepted Date : 23-03-2018


The progress in Recombinant DNA technology guided the way for production of transgenic plants and animals. The production of Bt cotton and Bt brinjal was one of them. Transgenic cows capable of producing human proinsulin and human lactoferrin in milk have been successfully engineered. Though the efficacy of the techniques used or such transgenic organism is questionable, with the creation of new and better technology like the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein system, the chances and effectiveness for success of gene incorporation during development of a transgenic animal has increased. In near future such transgenics are going to play an important role in support and sustenance of human society. This review deals with the application of transgenesis for enhancing productivity and promoting better health in animals and humans alike. 


Animal model Animal production Health Transgenesis.


  1. Boverhof, D.R., Chamberlain, M.P.,Elcombe, C.R., Gonzalez, F.J.,Heflich, R.H. and Lya, G.H. (2011). Transgenic animal models in toxicology: historical perspectives and future outlook. Toxicological Sciences, 121(2): 207-33.
  2. Brophy, B., Smolenski, G., Wheeler, T., Wells, D., L’Huillier, P. and Laible, G. (2003). Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nature Biotechnology, 21(2): 157-62.
  3. Brundige, D.R., Maga, E.A., Klasing, K.C. and Murray, J.D. (2008). Lysozyme transgenic goats’ milk influences gastrointestinal morphology in young pigs. Journal of Nutrition, 138(5): 921-6.
  4. Carmeliet, P., Moons, L. and Collen, D. (1998). Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovascular Research, 39: 8-33.
  5. Cozzi, E., Bosio, E., Seveso, M., Vadori, M. and Ancona, E. (2005). Xenotransplantation—current status and future perspectives. British Medical Bulletin, 75-76(1): 99–114.
  6. Donovan, M.D., Lardeo, M. and Foster-Frey, J. (2006). Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin.FEMS Microbiology Letters, 265(1): 133–139.
  7. Dunham, R.A. and Devlin, R.H. (1999). In: Transgenic Animals in Agriculture. Comparison of traditional breeding and transgenesis in farmed fish with implycations for growth enhancement and fitness. CAB International. NY, New York: pp. 209–229.
  8. Fenwick, N., Griffin, G. and Gauthier, C. (2009). The welfare of animals used in science: How the “Three Rs” ethic guides improvements. Canadian Veterinary Journal, 50: 523–530.
  9. Forsberg, C.W., Meidinger, R.G., Liu, M., Cottrill, M., Golovan, S. and Phillips, J.P. (2013). 2012. Integration, stability and expression of the E. coli phytase transgene in the Cassie line of Yorkshire Enviropig™. Transgenic Research, 22(2): 379-89. 
  10. Gilles, C., Vernus, B. and Bonnieu, A. (2007). Myostatin in the pathophysiology of skeletal muscle. Curr. Genomics, 8(7): 415–422. 
  11. Golding, M.C., Long, C.R., Carmell, M.A., Hannon, G.J. and Westhusin, M.E. (2006). Suppression of prion protein in livestock by RNA interference. Proceedings of the National Academy of Sciences of the United States of America. 103(14): 5285–5290. 
  12. Hyvönen, P., Suojala, L., Orro, T., Haaranen, J., Simola, O., Røntved, C. and Pyörälä, S. (2006). Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental escherichia coli intramammary infection. ýInfection and Immunity, 74(11): 6206–6212. 
  13. Joshi, P.C. and Guidot, D.M. (2011). HIV-1 transgene expression in rats induces differential expression of tumour necrosis factor alpha and zinc transporters in the liver and the lung. AIDS Research and Therapy,8(36): 1-11.
  14. Kabotyanski, E.B., Rijnkels, M., Freeman-Zadrowski, C., Buser, A.C., Edwards, D.P. and Rosen, J.M. (2009). Lactogenic hormonal induction of long distance interactions between beta-casein gene regulatory elements. The Journal of Biological Chemistry, 284(34): 22815-24.
  15. Kandhare, A.D., Raygude, K.S., Ghosh, P., Gosavi, T.P. andBodhankar, S.L. (2011). Patentability of Animal Models: India and the Globe. International Journal of Pharmaceutical and Biological Archive, 2(4): 1024-32.
  16. Karatzas, C.N., Zhou, J.F., Huang, Y., Duguay, F., Chretien, N., Bhatia, B., Bilodeau, A., (1999). Production of recombinant spider silk (BioSteel®) in the milk of transgenic animals. Transgenic Research, 8: 476-477.
  17. Koo, B.C., Kwon, M.S., Kim, D., Kim, S.A., Hyung, N. and Kim, K.T. (2017). Production of transgenic chickens constitutively expressing human erythropoietin (hEPO): Problems with uncontrollable overexpression of hEPO gene. Biotechnology and Bioprocess Engineering, 22(1): 22–29.
  18. Kumar, S., Singh, R., Vasudeva, N. and Sharma, S. (2012). Acute and chronic animal models for the evaluation of antidiabetic agents. Cardiovascular Diabetology, 11(9): 1-13.
  19. Lai, L., Kang, J.X., Li, R., Wang, J., Witt, W.T., Yong, H.Y., Hao, Y., Wax, D.M. and Murphy, C.N., (2006). Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 4: 435-436.
  20. Maksimenko, O.G., Deykin, A.V., Khodarovich, Y.M. and Georgiev, P.G. (2013). Use of transgenic animals in biotechnology: prospects and problems. Acta Naturae, 5(1): 33-46.
  21. Margawati, E.T. (2003). Transgenic Animals: Their Benefits to Human Welfare. Action bioscience.    biotechnology/margawati.html
  22. Mehta, P., Sharma, A. and Kaushik, R. (2017). Transgenesis in farm animals-A review. Agricultural Reviews, 38(2): 129-136.
  23. Miller, J.C., Holmes, M.C., Wang, J., et al. (2007). An improved zinc-finger nuclease technology architecture for highly specific genome editing. Nature Biotechnology, 25: 778–785. 
  24. Ormandy, E.H., Schuppli, C.A. and Weary, D.M. (2009). Worldwide trends in the use of animals in research: The contribution of genetically modified animal models. ATLA, 37: 63–68.
  25. Pino-Chavez, G. (2001). Differentiating acute humoral from acute cellular rejection histopathologically. Graft, 4: 60–3.
  26. Piper, L.R, Bindon, B.M. and Davis, G.H. (1985). The single gene inheritance of the high litter size of the Booroola Merino. In Genetics of Reproduction in Sheep. Butterworths. pp 115–125. 
  27. Powell, B.C., Rogers, G.E., Leigh, I. and Lane, B. (1994). Differentiation in Hard Keratin Tissues: Hair and Related Structures. In: The Keratinocyte Handbook. Cambridge University Press, Cambridge. pp 401-436.
  28. Pursel, V.G., Wells, K.D., Mitchell, A.D., Elsasser, T., Wall, R.J., Solomon, M.B., Coleman, M.E. and Schwartz, R.J. (1998). Expression of IGF-I in skeletal muscle of transgenic swine. Journal of Animal Science, 76: 130.
  29. Richt, J.A., Kasinathan, P., Hamir, A.N., Castilla, J., Sathiyaseelan, T. and Vargas, F. et. al. (2007). Production of cattle lacking prion protein. Nature Biotechnology, 25: 132–138. 
  30. Robert, G. (2016). Gene targeting using homologous recombination in Embryonic Stem Cells: The Future for Behavior Genetics? Frontiers in Genetics,7: 43. 
  31. Snaith, M.R. and Tornell, J. (2002). The use of transgenic systems in pharmaceutical research. Briefings in Functional Genomics and Proteomics, 1(2): 119-30.
  32. Songstad, D.D., Petolino, J.F., Voytas, D.F. and Reichert, N.A. (2017). Genome editing of plants. Critical Reviews in Plant Sciences,1-23.
  33. Spires, T.L. and Bradley, T.H. (2005). Transgenic models of alzheimer’s disease: Learning from animals. Neurotherapeutics: The Journal of the American Society for Experimental Neurotherapeutics, 2(3): 423-37.
  34. Verbeek, J.S. (1997). Scientific applications of transgenic mouse models. In: [Van Zutphen LFM, Van Der Meer M, eds]. Welfare Aspects of Transgenic Animals — Proceedings EC Workshop. Berlin: Springer-Verlag, pp 1–17.
  35. Visioli, F. and Strata, A. (2014). Advances in nutrition. Milk, dairy products, and their functional effects in humans: A narrative review of recent evidence. Advances in Nutrition, 5: 131-143.
  36. Weaver, S.A. and Morris, M.C. (2005). Risks associated with genetic modification: An annotated bibliography of peer reviewed natural science publications. Journal of Agricultural and Environmental Ethics, 18: 157–189.
  37. Wheeler, M.B., Bleck, G.T. and Donovan, S.M. (2001). Transgenic alteration of sow milk to improve piglet growth and health. Reproduction Supplement, 58: 313-24.
  38. Whitelaw, C.B., Archibald, A.L., Harris, S., McClenaghan, M., Simons, J. and Clark, A.J. (1999). Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Research, 1(1): 3-13.
  39. Whyte, J.J. and Prather, R.S. (2011). Genetic modifications of pigs for medicine and agriculture. Molecular Reproduction and Development, 78(10-11): 879-91.
  40. Yang, G.S., Banks, K.G., Bonaguro, R.J., et al. (2009). Next generation tools for high throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus. Genomics, 93:196–204.
  41. Yang, P., Wang, J., Gong, G., Sun, X., Zhang, R., Du, Z., Liu, Y., Li, R., Ding, F., Tang, B., Dai, Y. and Li, N. (2008). Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoSOne, 3(10): e3453.

Global Footprints