Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 38 issue 1 (march 2017) : 51-59

Phyllospheric microflora and its impact on plant growth: A review

Deepika Chaudhary*1, Rakesh Kumar1, Khushboo Sihag1, Rashmi, Anju Kumari2
1<p>Department of Microbiology,&nbsp;CCS Haryana Agricultural University, Hisar-125 004, India.</p>
Cite article:- Chaudhary*1 Deepika, Kumar1 Rakesh, Sihag1 Khushboo, Rashmi, Kumari2 Anju (2017). Phyllospheric microflora and its impact on plant growth: A review . Agricultural Reviews. 38(1): 51-59. doi: 10.18805/ag.v0iOF.7308.

The phyllosphere refers to the habitat provided by the aboveground parts of plants and on a global scale supports a large and complex microbial community. Microbial interactions in the phyllosphere can affect the fitness in natural communities and the productivity of agricultural crops. The structure of phyllospheric communities reflects immigration, survival and growth of microbial colonists, which is influenced by numerous environmental factors in addition to leaf physico-chemical properties. Culture-independent microbiological technologies as well advances in plant genetics and biochemistry provide methodological preconditions for exploring the interactions between plants and their microbiome in the phyllosphere. We are trying to focus here on the current knowledge of the composition of the foliar microbiome, its impact on plant growth and techniques for study this science.


  1. AbandaNkpwatt, D., Müsch, M., Tschiersch, J., Boettner, M. and Schwab, W. (2006). Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57: 4025–4032.

  2. Abril, A.B., Torres, P.A. and Bucher, E.H. (2005). The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. J. Trop. Eco. 21: 103–107.

  3. Arnold, A.E., Mejía, L.C., Kyllo, D., Rojas, E.I., Maynard, Z., Robbins, N. and Herre, E.A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Aca. Sci. USA 100: 15649–15654.

  4. Aslantas, R., Cakmakci, R. and Sahin, F. (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Hortic. 111: 371–377.

  5. Atamna-Ismaeel, N., Finkel, O.M., Glaser, F., Sharon, I., Schneider, R. and Post, A. (2012). Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ. Microbiol. 14: 140–146.

  6. Bakker P.A.H.M., Pieterse, C.M.J. and Van Loon, L.C. (2007). Induced systemic resistance by fluorescent Pseudomonas spp. Phytopatho. 97: 239-243.

  7. Balinte, P., Simmons, S.J., Blum, J.E., Ballare, C.L. and Stapleton, A.E. (2010). Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection. Mol. Plant Microbe Inter. 23: 473–484.

  8. Beattie, G.A. (2011). Water relations in the interaction of foliar bacterial pathogens with plants. Annu. Rev. Phytopatho. 49: 533–555.

  9. Becker, J.M., Parkin, T., Nakatsu, C.H., Wilbur, J.D. and Konopka, A. (2006). Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil. Microb. Eco. 51: 220-231.

  10. Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11–18.

  11. Berlec, A. (2012). Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci. 193: 96–102.

  12. Bodenhausen, N., Horton, M.W. and Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8:6329.

  13. Bokulich, N.A., Thorngate, J.H., Richardson, P.M. and Mills, D.A. (2014). Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proceedings of the National Academy of Science of the USA 111: E139-148.

  14. Borsodi, A.K., Rusznyak, A., Molnar, P., Vladar, P., Reskone, M.N., Toth, E.M., Sipos, R. and Marialigeti, K. (2007). Metabolic activity and phylogenetic diversity of reed (Phragmites australis) periphyton bacterial communities in a Hungarian shallow soda lake. Microb. Ecol. 53: 612-620.

  15. Braun, S.D., Hofmann, J., Wensing, A., Weingart, H., Ullrich, M.S. and Spiteller, D. (2010). In vitro antibiosis by Pseudomonas syringae Pss22d, acting against the bacterial blight pathogen of soybean plants, does not influence in planta biocontrol. J. Phytopathol. 158: 288–295.

  16. Bringel, F. and Couee, I. (2015). Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 6: 486.

  17. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Themaat, E. and Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64: 807–838.

  18. Burr, M.D., Clark, S.J., Spear, C.R. and Camper, A.K. (2006). Denaturing gradient gel electrophoresis can rapidly display the bacterial diversity contained in 16S rDNA clone libraries. Microb. Eco. 51: 479–486.

  19. Cabrefiga, J., Bonaterra, A. and Montesinos, E. (2007). Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora, the causal agent of fire blight. Int. Microbiol. 10: 123–132.

  20. Chinalia, F.A. and Killham, K.S. (2006). 2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE). Chemo. 64: 1675–1683.

  21. Conrath U, Pieterse, C.M.J. and MauchMani, B. (2002). Priming in plant-pathogen interactions. Trends Plant Sci 7: 210-    216.

  22. Cordier, T., Robin, C., Capdevielle, X., Fabreguettes, O., Desprez-Loustau, M. L. and Vacher, C. (2012). The composition of phyllosphere fungal assemblages of European beech (Fagussylvatica) varies significantly along an elevation gradient. New Phytol. 196: 510–519.

  23. David, E.A., Holden, P.J. and Stone, D.J.M. (2004). The use of phospholipid fatty acid analysis to measure impact of acid rock drainage on microbial communities in sediments. Microb. Eco. 48: 300–315.

  24. Delaney T.P. (1997). Genetic dissection of acquired resistance to disease. Plant Physiol. 113: 5-12.

  25. DeLeon-Rodriguez, N., Lathem, T.L., Rodriguez-R, L.M., Barazesh, J.M., Anderson, B.E. and. Beyersdorf, A.J. (2013). Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc. Natl. Acad. Sci. U.S.A. 110: 2575–2580.

  26. Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., Mering, C. and Vorholt, J.A. (2009). Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Pro. Natl. Aca. Sci. USA. 106: 16428–16433.

  27. Ella, A., Eman, E.K. and Wafaa, A.A.Z (2011). Effect of Foliar application of some growth promoters on growth, fruiting and fruit quality of Sultani Fig trees. J.Agric. & Env. Sci. Alex. Univ., 10: 1-21.

  28. Enya, J., Shinohara, H., Yoshida, S., Negishi, T.T.H., Suyama, K. and Tsushima, S. (2007). Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb. Eco. 53: 524–536.

  29. Esitken , A., Yildiz, H.E., Ercisli, S., Donmez, M., Turan, M. and Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrientcontents of organically grown strawberry. Sci. Horti. 124: 62–66.

  30. Ferrara, F.I.S., Oliveira, Z.M., Gonzales, H.H.S., Floh, E.I.S. and Barbosa, H.R. (2012). Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant and Soil 353: 409- 417.

  31. Finkel, O.M., Burch, A.Y., Lindow, S.E., Post, A.F. and Belkin, S. (2011). Phyllosphere microbial communities of a salt-    excreting desert tree: geographical location determines population structure. Appl. Environ. Microbiol. 7: 7647–    7655.

  32. Furnkranz, M., Wanek, W., Richter, A., Abell, G., Rasche, F. and Sessitsch, A. (2008). Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of tropical lowland rainforest of Costa Rica. ISME J. 2: 561–570.

  33. Hartley, S.E., Eschen, R., Horwood, J.M., Gange, A.C. and Hill, E.M. (2015). Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsiumarvense. New Phytol. 205: 816–827.

  34. Hunter, P.J., Hand, P., Pink, D., Whipps, J.M. and Bending, G.D. (2010). Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the Lettuce (Lactuca species) phyllosphere. Appl. Environ. Microbiol. 76: 8117–8125.

  35. Ibekwe, A. and Grieve, C.M. (2004). Changes in developing plant microbial community structure as affected by contaminated water. FEMS Microbiol. Ecol. 48: 239-248.

  36. Iguchi, H., Sato, I., Sakakibara, M., Yurimoto, H. and Sakai, Y. (2012). Distribution of methanotrophs in the phyllosphere. Biosci. Biotechnol. Biochem. 76: 1580– 1583. 

  37. Izhaki, I., Svetlana, F., Yoram, G. and Malka, H. (2013). Variability of Bacterial Community Composition on Leaves Between and Within Plant Species. Curr. Microbiol. 66: 227–235.

  38. Jackson, C. R, Stone, B.W. G. and Tyler, H.L. (2015). Emerging Perspectives on the Natural Microbiome of Fresh Produce Vegetables. Agriculture. 5:170-187.

  39. Jackson, E.F., Echlin, H.L. and Jackson, C.R. (2006). Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol. Eco. 58: 236–246.

  40. Jager, E.S., Wehner, F.C. and Korsten, L. (2001). Microbial ecology of the mango phylloplane. Microb. Ecol. 42: 201–207.

  41. Jo, Y., Cho, J.K., Choi, H., Chu, H., Lian, S. and Cho, W.K. (2015). Bacterial communities in the phylloplane of Prunus species. J. Basic Microbiol. 55: 504–508.

  42. Johansen, A. and Olsson, S. (2005). Using phospholipid fatty acid technique to study short-term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere. Microb. Ecol. 49: 272-281.

  43. Jumpponen, A. and Jones, K.L. (2010). Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and non-urban environments. New Phytol. 186: 496–513.

  44. Kadivar, H. and Stapleton, A.E. (2006). Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb. Eco. 45: 353–361.

  45. Kembel, S.W., O’Connor, T.K., Arnold, H.K., Hubbell, S.P., Wright, S.J. and Green, J.L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neo tropical forest. Proc. Natl. Acad. Sci. U.S.A. 111:13715–13720.

  46. Kim, M., Singh, D., LieHoe, A., Go, R., Rahim, A.R., Ainnuddin, A.N., Chun, J. and Adams, M.J. (2012). Distinctive phyllosphere bacterial communities in tropical trees. Microb. Eco. 63: 674–681.

  47. Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C. and Vorholt, J.A. (2010). Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4: 719–728.

  48. Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C. and Vorholt, J.A. (2011). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 11: 1–13.

  49. Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C. and Vorholt, J.A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6: 1378–1390.

  50. Kobayashi, D.Y. and Palumbo, J.D. (2000). Bacterial endophytes and their effects on plants and uses in agriculture. In Microbial Endophytes. Edited by Bacon CW, White JF. New York: Marcel Dekker 199-233. 

  51. Legard, D.E., McQuilken, M.P., Whipps, J.M., Fenlon, J.S., Fermor, T.R., Thompson, I.P., Bailey, M.J. and Lynch, J.M. (1994). Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism. Agri. Ecosyst. Environ. 50: 87–101.

  52. Lindow, S.E. and Brandl, M.T. (2003). Microbiology of the phyllosphere. Appl. Enviro. Microbiol. 69: 1875–1883.

  53. Madhaiyan, M., Poonguzhali, S., Lee, H.S., Hari, K., Sundaram, S.P. and Sa, T.M. (2005). Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol. Fert. Soils 41: 350–358.

  54. Manching, H.C., Balint-Kurti, P.J. and Stapleton, A.E. (2014). Southern leaf blight disease is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilisation. Front. Plant Sci. 5: 403.

  55. Miyamoto, T., Kawahara, M. and Minamisawa, K. (2004). Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 70: 6580–6586.

  56. Muller, T. and Ruppel, S. (2014). Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol. Ecol. 87: 2–17.

  57. Mwajita, M.R., Murage, H., Tani, A. and Kahangi, E.M. (2013). Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. Springer Plus. 2: 606.

  58. Nadalig, T., Greule, M., Bringel, F., Keppler, F. and Vuilleumier, S. (2014). Probing the diversity of chloromethane-    degrading bacteria by comparative genomics and isotopic fractionation. Fron. Microbiol. 5: 523.

  59. Nakamiya, K., Nakayama, T., Ito, H., Shibata, Y. and Morita, M. (2009). Isolation and properties of a 2-chlorovinyl arsenic acid degrading microorganism. J. Haz. Mat. 165: 388–393.

  60. Ning, J., Gang, G., Bai, Z., Hu, Q., Qi, H., Ma, A., Zhaun, X. and Zhuang, G. (2012). In situ enhanced bioremediation of dichlorvos by a phyllosphere Flavobacterium strain. Front. Environ. Sci. Engin. 6: 231–237.

  61. Omer, Z.S., Tombolini, R., Broberg, A. and Gerhardson, B. (2004). Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Reg. 43: 93–96.

  62. Opelt, K., Berg, C., Schonmann, S., Eberl, L. and Berg, G. (2007). High specificity but contrasting biodiversity of Sphagnum-    associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 1: 502–516.

  63. Otte, M.L., Wilson, G., Morris, J.T. and Moran, B.M. (2004). Dimethyl sulphonio propionate (DMSP) and related compounds in higher plants. J. Exp.Bot. 55: 1919–1925.

  64. Ottesen, A.R., Gorham, S., Pettengill, J.B., Rideout, S., Evans, P. and Brown, E. (2015). The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes. J. Sci. Food Agric. 95: 1116-25.

  65. Penuelas, J. and Staudt, M. (2009). BVOCs and global change. Trends Plant Sci. 15: 133–144.

  66. Pieterse C.M., Van Wees, S.C., Hoffland, E., van Pelt, J.A. and van Loon, L.C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237.

  67. Pieterse, C.M., Van der Does, D., Zamioudis, C., Leon-Reyes, A. and Van Wees, S.C. (2012). Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28: 489–521.

  68. Pirlak, L., Turan, M., Sahin, F. and Esitken, A. (2007). Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth, and nutrition element contents of leaves. J. Sustain. Agric. 30: 145–155.

  69. Prasanna, R., Nain, L., Pandey, A.K. and Saxena, A.K. (2011). Microbial diversity and multidimensional interactions in the rice ecosystem. Arch. Agron. Soil Sci. 1: 1–22.

  70. Rasche, F., Trondl, R., Naglreiter, C., Reichenauer, T. and Sessitsch, A. (2006). Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can. J. Microbiol. 52: 1036–1045.

  71. Rastogi, G., Sbodio, A., Tech, J.J., Suslow, T.V., Coaker, G.L. and Leveau, J.H. (2012). Leaf microbiota in an agroecosystem: spatio temporal variation in bacterial community composition on field-grown lettuce. ISME J. 6: 1812–1822.

  72. Rastogi, G., Coaker, G.L. and Leveau, J.H. (2013). New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett. 348: 1–10.

  73. Ren, G., Zhang, H., Lin, X., Zhu, J. and Jia, Z. (2014). Response of phyllosphere bacterial communities to elevated CO2 during rice growing season. Appl. Microbiol. Biotechnol. 98: 9459–9471.

  74. Ruppel, S., Krumbein, A. and Schreiner, M. (2008). Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions. Microb. Eco. 56: 364–372.

  75. Ryu, J., Madhaiyan, M., Poonguzhali, S., Yim, W., Indiragandhi, P., Kim, K., Anandham, R., Yun, J. and Sa, T. (2006). Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechno. 16: 1622–1628.

  76. Saa, S., DelRio, A., Castro, S. and Brown, P. (2015). Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond. Front. Plant Sci. 6: 1-9.

  77. Sandhu, A., Halverson, L.J. and Beattie, G.A. (2007). Bacterial degradation of air borne phenol in the phyllosphere. Environ. Microbiol. 9: 383–392.

  78. Schafer, H., Myronova, N. and Boden, R. (2010). Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 61: 315–334.

  79. Scheublin, T.R. and Leveau, J.H. (2013). Isolation of Arthrobacter species from the phyllosphere and demonstration of their epiphytic fitness. Microbiol. 2: 205–213.

  80. Scheublin, T.R., Deusch, S., Moreno-Forero, S.K., Müller, J.A., vanderMeer, J.R. and Leveau, J.H. (2014). Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ. Microbiol. 16: 2212–2225.

  81. Schreiber, L., Krimm, U., Knoll, D., Sayed, M., Auling, G. and Kroppenstedt, R.M. (2005). Plant-microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol. 166: 589–594.

  82. Shukla, S. and Sharma, R.B. (2016). Diversity of surface mycoflora on Tinospora cordifolia. Ind. J. Plant Sci. 5: 42–53.

  83. Stapleton, A.E. and Simmons, S.J. (2006). Plant control of phyllosphere diversity: genotype interactions with ultraviolet- B radiation. In Microbial Ecology of the Aerial Plant Surface ed. Bailey, M.J.; Lilley, A.K.; Timms-Wilson, P.T.N. and Spencer-Phillips, P.T.N. pp. 223–238 Wallingford, UK: CABI International.

  84. Stiefel, P., Zambelli, T. and Vorholt, J.A. (2013). Isolation of optically targeted single bacteria using Fluid FM applied to aerobic anoxygenic phototrophs from the phyllosphere. Appl. Environ. Microbiol. 79: 4895–4905. 

  85. Tsavkelova, E.A., Cherdyntseva, T.A., Botina, S.G. and Netrusov, A.I. (2007). Bacteria associated with orchid roots and microbial production of auxin. Microbiol. Res. 162: 69–76.

  86. Vacher, C., Hampe, A., Porte, A., Sauer, U., Compant, S. and Morris, C. (2016). The Phyllosphere: Microbial Jungle at the Plant–Climate Interface. Annu. Rev. Ecol. Evol. Syst. 47: 1–24.

  87. Van Wees S.C., De Swart, E.A., Van Pelt, J.A., Van Loon, L.C. and Pieterse, C.M. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate- dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 8711–8716. 

  88. Van Wees S.C., Vander, E.S and Pieterse, C.M. (2008). Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11: 443 – 448.

  89. Vorholt, J.A. (2012). Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10: 828–840.

  90. Whipps, J.M., Hand, P., Pink, D. and Bending, G.D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105: 1744 –1755.

  91. Wu, C.H., Bernard, S., Andersen, G. and Chen, W. (2009). Developing microbe-plant interactions for applications in plant-    growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Micro. Biotechnol. 2: 428–440.

  92. Xie, W.Y.,. Su, J.Q and Zhu, Y.G. (2015). Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by Illumina high-throughput sequencing. Appl. Environ. Microbiol. 81: 522-532.

  93. Yadav, R.K., Karamanoli, K. and Vokou, D. (2010). Estimating bacterial population on the phyllosphere by serial dilution plating and leaf imprint methods. Ecol. Soc. 17: 47–52.

  94. Yutthammo, C., Thongthammachat, N., Pinphanichakarn, P. and Luepromchai, E. (2010). Diversity and activity of PAH-    degrading bacteria in the phyllosphere of ornamental plants. Microb. Eco. 59: 357–368.

  95. Zhang, B., Bai, Z., Hoefel, D., Wang, X., Zhang, L. and Li, Z. (2010). Microbial diversity within the phyllosphere of different vegetable species. Current Research, Technology and Education topics in Appl. Microbiol. Micro. Biotechnol. 1067–1077.

     

Editorial Board

View all (0)