Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 37 issue 3 (september 2016) : 245-249

RNA interference (RNAi): Application in crop improvement: A review

Khanin Pathak*1, Bhabesh Gogoi2
1<p>Department of Biochemistry and Agricultural Chemistry,&nbsp;Assam Agricultural University, Jorhat-785 013, Assam, India.</p>
Cite article:- Pathak*1 Khanin, Gogoi2 Bhabesh (2016). RNA interference (RNAi): Application in crop improvement: A review . Agricultural Reviews. 37(3): 245-249. doi: 10.18805/ag.v37i3.3540.

Among those various recent biotechnological tools, RNA Interference (RNAi) has been playing important role in crop improvement. RNAi can be defined as the ability of exogenous or endogenous double stranded RNA to suppress the expression of the gene which corresponds to the sequence of double stranded RNA. RNAi has been extensively used in various species to suppress gene function and is a novel approach to modify the gene expression for better quality traits and nutritional improvement in different crops. If judiciously used, this technology may go a long way to narrow the gap through production of disease, insect and virus resistant, nutritionally rich and toxic-free crops. The technology that has been developed by the developed countries will be available to any lab including those in the developing countries, where work utilizing RNAi technology is either in progress or going to be launched shortly. Ultimately this kind of technology can be important to global food security and also to maintain sustainability. 


  1. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T. and Roberts, J. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnol. 25: 1322-1326.

  2. Blair, C.D. and Olson, K.E. (2015). The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions . Viruses 7:820-843

  3. Dash, S.K., Mohapatra, S.K. and Malik, H.N. (2015). RNA Interference – A fine tuner of gene regulation: a Review Int. J. Biotechnol. Mol. Biol. Res. 6:35-39.

  4. Davuluri, G.R., va Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M. and Bowler, C. (2005). Fruit specific RNAi- mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 23: 890-895.

  5. Ding, S.W. (2010). RNA-based antiviral immunity. Nature Review of Immunol. 10: 632-644.

  6. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Webber, K. and Tuscil, T. (2001b). Duplexes of 21 nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature . 411:494-498.

  7. Elbashir, S.M., Lendeckel, W. and Tuscil, T. (2001a). RNA interference is mediated by 21 and 22 nucleotide RNAs. Genes and Development.15: 188-200.

  8. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in C. elegans. Nature 391:806–811. 

  9. Flores, T., Karpova, O., Su, X., Zeng, P., Bilyeu, K., Sleper, D.A., Nguyen, H.T. and Zhang, Z.J. (2008). Silencing of GmFAD3 gene by siRNAleads to low alpha-linolenicacids (18:3) of fad3-mutant phenotype in soybean [Glycinemax (Merr.)]. Transgenic Res. 17:839–850.

  10. Goldstein, D.A., Songstad, D., Sachs, E. and Petrick, J. (2009). RNA interference in plants .Monsanto. http://www.monsanto.com

  11. Guru, T. (2000). A silence that speaks volumes. Nature. 404:804-808.

  12. Hannon, G.J. (2002). RNA interference. Nature. 418: 244–251.

  13. Kumar, G., Campbell, L.M., Puckhaber, L., Stipanovic, R.D. and Rathore, K.S. (2006) .Engineering cottonseed for use in humannutrition by tissue-specific reduction of toxic gossypol. Proceedings of the National Academy of Sciences of the USA. 103: 18054–18059.

  14. Kusaba, M., Miyahara, K., Lida, S., Fukuoka ,H., Takario, T., Sassa, H., Nishimura, M. and Nishio, T. (2003). Low glutenin content 1: a dominant mutation that suppresses the glutenin multigene family via RNA silencing in rice. Pl. Cell.15: 1455-1467.

  15. Mao, Y., Tao, X., Xue, X., Wang, L. and Chen, X. (2011). Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res.20: 665–673.

  16. Mello, C.C. and Conte, D.J. (2004). Revealing the world of RNA interference. Nature.16:338-42.

  17. Nakatsuka, T., Mishibaa, K.I, Abe, Y., Kubota, A., Kakizaki, Y., Yamamura, S. and Nishihara, M. (2008). Plant Biotechnology, Flower color modification of gentian plants by RNAi mediated gene silencing. Pl. Biotechnol. 25:61-68.

  18. Nishihara, M., Nakatsuka, T., Hosokawa, K., Yokoi, T., Abe, Y., Mishiba, K. and Yamamura, S. (2006). Dominant inheritance of white-flowered and herbicide-resistant traits in transgenic gentian plants. Pl. Biotechol. 23: 25–31.

  19. Rodoni, B.C. and Dale, J.L. (1999). Harding RM Characterization and expression of the coat protein-coding region of the banana bract mosaic potyvirus, development of diagnosticassays and detection of the virus in banana plants from five countries in Southeast Asia. Archives of Virol. 144: 1725-1737.

  20. Spencer, P.S., Roy, D.N., Ludolph, A., Hugon, J., Dwivedi, M.P. and Schaumburg, H.H. (1986). Lathyrism: evidence for role of the neuroexcitatory aminoacid BOAA. Lancet. 2 : 1066-7.

  21. Tanaka, Y., Katsumoto, Y., Brugliera, F. and Mason, J. (2005). Genetic engineering in floriculture. Pl Cell Tissue and Organ Culture. 80: 1–24.

  22. Tang, G., Galili, G. and Zhuang, X. (2007). RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3: 357–369.

  23. Van Uyen, N. (2006). Novel approaches in plants breeding RNAi technology. Proc. of Intern. Workshop on Biotechnol. in Agri .12-16.

  24. Wang, M., Abbott, D. and Waterhouse, P.M. (2000). A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol. Pl. Pathol. 1: 401-410.

  25. Waterhouse, P.M., Graham, M.W. and Wang, M.B. (1998). Virus resistance and gene silencing can be induced by simultaneous expression of sense and antisense RNA. Proc. of Natl Acad. Sci. USA 95: 13959-13964

  26. Younis, A., Siddique, M.I., Kim, C.K. and Lim, K.B. (2014). RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding. Int. J. Biol. Sci. 10: 50-58.

Editorial Board

View all (0)