Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 33 issue 1 (march 2012) : 16 - 26

MAIZE ROOT MORPHOLOGY AND NITROGEN USE EFFICIENCY- A REVIEW

S. Sen, T. Setter, M.E. Smith
1Department of Plant Breeding and Genetics, Cornell University Cornell University, Ithaca, NY-14853, USA
  • Submitted|

  • First Online |

  • doi

Cite article:- Sen S., Setter T., Smith M.E. (2024). MAIZE ROOT MORPHOLOGY AND NITROGEN USE EFFICIENCY- A REVIEW. Agricultural Reviews. 33(1): 16 - 26. doi: .
The increased population pressure has led to the maximum use of chemical fertilizers especially in the major crops such as rice, wheat and maize production. In the United States, excess application of nitrate-nitrogen in maize cultivation is becoming a major issue because of increased ground water contamination. The nitrogen used by the maize plant is very low; often most of the applied nitrogen is lost through leaching. Root traits, amount of nitrogen present in the soil, soil pH, competition for available nitrogen between the weed and crop plant are challenges in improving nitrogen use efficiency (NUE) in maize breeding program. Effective root system is important in breeding maize for NUE as it is the root system that takes up nutrients from the soil and can help prevent leaching of nitrogen. The trait – NUE often becomes a limiting factor due to low frequency of NUE alleles in maize. Identifying genotypes with efficient root system and improved NUE for developing suitable hybrids would reduce yield loss in maize. It will also have positive effect on the environment by lowering down the excessive nitrogenous fertilizer application.
  1. Agrama, H.A.S. and Moussa M.E. (1996). Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica. 91: 89-97.
  2. Agrama H.A.S., A.G. Zacharia, M. Said, M. Tuinstra. (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed., 5: 187-195.
  3. Al-Kaisi, M. and X. Yin. (2003). Effects of N rate, irrigation rate, and plant population on corn yield and water use efficiency. Agron. J., 95: 1475-1482.
  4. Atlin, G.N., R.J. Baker, K.B. McRae, and X. Lu. (2000). Selection response in subdivided target regions.
  5. Crop Sci., 40:7–13.
  6. Baligar, V.C., N.K. Fageria, Z.L. He. (2001). Nitrogen use efficiency in plants. Common Soil Plant Anal., 32: 921-950.
  7. Bänziger, M., G.O. Edmeades, and H.R. Lafitte. (2002). Physiological mechanisms contributing to the increased N stress tolerance of tropical maize selected for drought tolerance. Field Crops Res., 75: 223-233.
  8. Beauchamp E.G., L.W. Kannenberg, R.B. Hunter. (1976). Nitrogen accumulation and translocation in corn genotypes following silking. Agron. J., 68: 418–422.
  9. Below, F.E., J.O. Cazetta, and J.R. Seebauer. (2000). Carbon/nitrogen interactions during ear and kernel development in maize. In: Westgate, M.E., and K. Boote (eds). Physiology and Modeling Kernel set in Maize. CSSA Special Publication. Crop Science Society of America. Madison. Number 29: 15-24.
  10. Bertin, P. and Gallais, A. (2001). Physiological and genetic basis of nitrogen use efficiency in maize. II. QTL detection and coincidences. Maydica. 46: 53–68.
  11. Blum, A. (1988). Plant Breeding for Stress Environments. CRC Press, Boca Raton, FL.
  12. Bohn, M., J. Novais, R. Fonseca, R. Tuberosa and T. E. Grift. (2006). Genetic evaluation of root complexity in maize. Acta Agron. Hungarica, 54(3): 1-13.
  13. Breteler, H., C.H.T. Cate, P. Nissen. (1979). Time-course of nitrate uptake and nitrate reductase activity in nitrogen- depleted dwarf bean. Physiol. Plant., 47: 49-55.
  14. Campos, H., M. Cooper, J.E. Habben, G.O. Edmeades, and J.R. Schussler. (2004). Improving drought tolerance in maize: A view from industry. Field Crops Res., 90: 19–34.
  15. Carter, M. R. and Rennie, D. A. (1987). Effects of tillage on deposition and utilization of 15N residual fertilizer. Soil Tillage Res., 9: 33–43.
  16. Cassman, K.G. (1999). Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, USA. 96: 5952–5959.
  17. Chantarotwong, W., R.C. Huffaker, B.L. Miller, R.C. Grandstedt. (1976). In vivo nitrate reduction in relation to nitrate uptake, nitrate content, and in vivo nitrate reductase activity in intact barley seedlings. Plant Physiol.,
  18. 57: 519-522.
  19. Chapman, S.C. and Edmeades, G.O. (1999). Selection improves drought tolerance in tropical maize populations. II. Direct and correlated responses among secondary traits. Crop Sci., 39: 1315-1324.
  20. Costa,C., L. M. Dwyer, X. Zhou, P. Dutilleul, C. Hamel, L. M. Reid, and D. L. Smith. (2002). Root development: Root morphology of contrasting maize genotypes. Agron. J., 94: 96-101.
  21. Delmer, D. (2005). Agriculture in the developing world: connecting innovations in plant research to downstream applications. Proceedings of the National Academy of Sciences, USA. 102: 15739-15746.
  22. Drew, M.C., L.R. Saker, and T.W. Ashley. (1973). Nutrient supply and the growth of the seminal root system of barley. I. The effect of nitrate concentration on the growth of axes and laterals. J. Exptl Bot., 24: 1189-1202.
  23. Duque-Vargas, J., S. Pandey, G. Granados, H. Ceballos, E. Knapp. (1994). Inheritance of tolerance to soil acidity in tropical maize. Crop Science. 34: 50-54.
  24. Eck, H. V. (1984). Irrigated corn yield response to nitrogen and water. Agron. J., 76: 421–428.
  25. Edmeades, G.O., H.R. Lafitte, J. Bolaños. (1990). Selection for abiotic stress tolerance in maize. In: De-Leon, C.G., G. Granados, M.D. Read (eds) Proceedings Fourth Asian Regional Maize Workshop (Islamabad, Pakistan), pp. 230–268. CIMMYT, México.
  26. Edmeades, G.O., J. Bolaños, M. Hemandez, S. C. Chapman, H.R. Lafitte, M. Banziger. (1999). Selection improves tolerance to mid/late season drought in tropical maize populations. I. Gains in biomass, grain yield and harvest index. Crop Sci., 39: 1306-1315.
  27. Eghball, B. and Maranville, J.W. (1991). Interactive effects of water and nitrogen stresses on nitrogen utilization efficiency, leaf water status and yield of corn genotypes. Communications in Soil Sci. Plant Anal., 22: 1367–1382.
  28. Eghball, B. and Maranville, J.W. (1993). Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stresses. Agron. J., 85: 147–152.
  29. Ersoz, E.S., J.Yu, and E. Buckler. (2007). Applications of linkage disequilibrium and association mapping. In: Varshney, R.K., and R. Tuberosa (eds) Genomics-Assisted Crop Improvement. Genomics Approaches and Platforms. Springer. New York. 1: 97–120.
  30. Falconer, D.S. (1952). The problem of environment and selection. The American Naturalist. 86: 293–298.
  31. FAO. (2004). FAOSTAT. http://faostat.fao.org
  32. Feil, B., R. Thiraporn, G. Geisler, and P. Stamp. (1990). Root traits of maize seedlings-indicators of nitrogen efficiency?. Plant Soil. 123: 155-159.
  33. Fitter, A. (1996). Characteristics and functions of root systems. In: Waisel, Y., A. Eshel, and U. Kafkafi (eds) Plant roots: The hidden half. Marcel Dekker, New York.
  34. Franco, A.A. and Munns, D.N. (1982). Plant assimilation and nitrogen cycling. Plant and Soil. 67: 1-13.
  35. Frova, C., P. Krajewski, N. Di Fonzo, M. Villa, and M. Sari-Gorla. (1999). Genetic analysis of drought tolerance in maize by molecular markers. I. Yield components. Theor. Appl. Gene., 99: 280–288.
  36. Gallais, A. and Coque, M. (2005). Genetic variation and selection for nitrogen use efficiency in maize: a synthesis. Maydica. 50: 531-537.
  37. Gallais, A. and Hirel, B. (2004). An approach to the genetics of nitrogen use efficiency in maize. J. Exptl. Bot., 55 (396): 295-306.
  38. Glass, A.D.M, D.T. Britto, B.N. Kaiser. 2002. The regulation of nitrate and ammonium transport systems in plants. J. Exptl. Bot., 53: 855–864.
  39. Good, A.G., A.K. Shrawat, and D.G. Muench. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Sci., 9: 597-605.
  40. Hallmark, W.B. and Huffaker, R.C. (1978). The influence of ambient nitrate, temperature, and light on nitrate assimilation in sudan grass seedlings. Physiol. Plant., 44: 147-152.
  41. Herzog, H. and Götz, K. P. (2004). Influence of water deficit on uptake and distribution of nitrogen in soybeans monitored by soil injected 15N. J. Agron. Crop Sci., 190: 161–167.
  42. Hirel, B. and P.J. Lea. 2001. Ammonium assimilation. In: Lea PJ, Morot- Gaudry JF, eds. Plant nitrogen. Berlin: Springer-Verlag, 79–99.
  43. Hirel, B. and Lemaire, G. (2005). From agronomy and ecophysiology to molecular genetics for improving nitrogen use efficiency in crops. In: Enhancing the efficiency of nitrogen utilization in plants. S.S. Goyal, R. Tischner, and A.S. Basra (eds). Published by Food Products Press, NY, USA.
  44. Hirel, B., J. Le Gouis, B. Ney, and A. Gallais. (2007). The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exptl. Bot., 58: 2369–2387.
  45. Hochholdinger, F., W.J. Park, M. Sauer, and K. Woll. (2004). From weeds to crops: genetic analysis of root development in cereals. Trends in Plant Sci., 9: 42-48.
  46. Hochholdinger F., M. Sauer, D. Dembinsky, N. Hoecker, N. Muthreich, M. Saleem, and Y. Liu. (2006). Proteomic dissection of plant development. Proteomics. 6: 4076-4083.
  47. Hochholdinger, F. and Tuberosa, R. (2009). Genetic and genomic dissection of maize root development and architecture. Current Opinions in Plant Biol., 12: 172-177.
  48. Hochholdinger, F. and Zimmermann, R. (2008). Conserved and diverse mechanisms in root development. Current Opinion in Plant Biol., 11: 70-74.
  49. Jordan, W. R., P.R. Douglas and Jr P.J. Shouse. (1983). Strategies for crop improvement for drought-prone regions. Agric. Water Manage., 7: 281–199.
  50. Lafitte, H.R. and Edmeades, G.O. (1994a). Improvement for tolerance to low soil nitrogen in tropical maize. I. Selection criteria. Field Crops Res., 39: 1–14.
  51. Lafitte, H.R. and Edmeades, G.O. (1994b). Improvement for tolerance to low soil nitrogen in tropical maize. II. Grain yield, biomass production,and N accumulation. Field Crops Res., 39: 15–25.
  52. Lafitte, H.R. and Edmeades, G.O. (1994c). Improvement for tolerance to low soil nitrogen in tropical maize. III. Variation in yield across environments. Field Crops Res., 39: 27–38.
  53. Lea, P.J. and Ireland, R.J. (1999). Plant amino acids. In: Singh BK, ed. Nitrogen metabolism in higher plants. New York, Basel, Hong Kong: Marcel Dekker Inc, 1-47.
  54. Liedgens, M. and W. Richner. (2001). Relation between maize (F L.) leaf area and root density observed with minirhizotrons. Eur. J. Agron., 15: 131-141.
  55. Liu, D. (1991). Efficient use of nitrogen in crop production. Extension Bulletin. 340. Food and Fertilizer Technology Center, Taiwan.
  56. Liu J.X., L.L. Han, F.J. Chen, J. Bao, F.S. Zhang, G.H. Mi. (2008). Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.). Plant Sci., 175: 272-282.
  57. Loqué, D. and von Wirèn, N. (2004). Regulatory levels for the transport of ammonium in plant roots. J. Exptl Bot., 55(401): 1293-1305.
  58. Lynch, J.P., K.L. Neilson, R.D. Davis, and A.G. Jablokow. 1997. SimRoot: Modeing and visualization of root systems. Plant and Soil. 188(1): 139-151.
  59. MacDonald, A.J., P.R. Poultron, D.S. Powlson and D.S. Jenkinson. (1997). Effect of season, soil type and cropping on recoveries residues and losses of 15-N labeled fertilizer applied to arable soil in spring. J. Agric. Sci., (Cambridge). 129: 125-154.
  60. Maizlish, N.A., D.D. Fritton, and W.A. Kendall. (1980). Root morphology and early development of maize at varying levels of nitrogen. Agron. J., 72: 25-31.
  61. Malagoli, P., P. Laine, L. Rossato, A. Ourry. (2005). Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. Annals of Bot., 95: 853-861.
  62. Mamo, M., G.L. Malzer, D.J. Mulla, D.R. Huggins, J. Strock. (2003). Spatial and temporal variation in economically optimum nitrogen rate for corn. Agron. J., 95: 958-964.
  63. Marsh, B. (1971). Measurement of length in random arrangements of lines. J. Appl. Ecol., 8: 265–267.
  64. Menzel M.I., A.M. Oros-Peusquens, A. Pohlmeier, N.J. Shah, U. Schurr, H.U.Schneider. (2007). Comparing 1H-NMR imaging and relaxation mapping of German white asparagus from five different cultivation sites. J. Plant Nutri. Soil Sci., 170: 24-38.
  65. Moll, R.H., E.J. Kamprath, and W.A. Jackson. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J., 74: 562-564.
  66. Mollaretti G., M. Bosio, E. Gentinetta, M. Motto. (1987). Genotypic variability for N-related traits in maize. Identification of inbred lines with high or low levels on NO3-N in the stalks. Maydica. 32: 309–323.
  67. Moser, S. B., B. Feil, S. Jampatong, and P. Stamp. (2006). Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize. Agric. Water Manage., 81: 41–58.
  68. Moose, S. and Below, F.E. (2008). Biotechnology approaches to improving maize nitrogen use efficiency. In: Molecular genetic approaches to maize improvement. Kriz, A.L. and B.A. Larkins (eds). Springer Berlin Heidelberg (Publisher). Volume 63. Part II.
  69. Muchow, R.C. (1989). Comparative productivity of maize, sorghum and pearl millet in a semi-arid tropical environment. II. Effect of water deficits. Field Crops Res., 20: 207-219.
  70. Mumera, L.M. and Below, F.E. (1993). Role of nitrogen in resistance to Striga parasitism of maize. Crop Sci., 33: 758- 763.
  71. Muruli, B.I. and Paulsen, G.M. (1981). Improvement of nitrogen use efficiency and its relationship to other traits in maize. Maydica. 26: 63–73.
  72. Newman, E.I. (1966). A method of estimating the total root length in sample. J. Appl. Ecol., 3: 139–145.
  73. Oaks, A. (1992). Re-evaluation of nitrogen assimilation in roots. Biosci., 42: 103-111.
  74. Orsel, M., S. Filleur, V. Fraisier and F.Daniel-Vedele. (2002). Nitrate transport in plants: which gene and which control? J. Exptl Bot., 53(370): 825-833.
  75. Otegui, M. E., F. H. Andrade, and E. E. Suero. (1995). Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res., 40: 87–94.
  76. O’Toole, J. C., and Bland, W. L. (1987). Genotypic variation in crop plant root systems. Advances in Agron., 41: 91– 145.
  77. Pandey, R. K., J. W. Maranville, and A. Admou. (2000). Deficit irrigation and nitrogen effects on maize in a Sahelian environment I. Grain yield and yield components. Agric. Water Manage., 46: 1–13.
  78. Presterl, T., G. Seitz, M. Landbeck, W. Thiemt, W. Schimdt, H.H. Geiger. (2003). Improving nitrogen use efficiency in European maize: estimation of quantitative parameters. Crop Sci., 43: 1259-1265.
  79. Reiter H.S., J.G. Coors, M.R. Sussman, W.H. Gabelman. (1991). Genetic analysis of tolerance to low phosphorus stress in maize using RFLPs. Theor. Appl. Gene., 82: 561-568.
  80. Ribaut J.M., D.A. Hoisington, J.A. Deutsch, C. Jiang, D. GonzaleÁs-de-Leon. (1997). Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker assisted selection strategies. Theor. Appl. Gene., 94: 887-896.
  81. Rimski-Korsakov, H., G. Rubio, and R.S. Lavado. (2009). Effect of water stress in maize crop production and nitrogen fertilizer fate. J. Plant Nutri., 32: 565–578.
  82. Samborski, S., M. Kozak, R.A. Azevedo. 2008. Does nitrogen uptake affect nitrogen uptake efficiency, or vice versa? Acta Physiol. Plant., 30: 419-420.
  83. Sanguineti, M.C., R. Tuberosa, P. Landi, S. Salvi, M. Maccaferri, E. Casarini and S. Conti. (1999). QTL analysis of drought related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field- grown maize. J. Exptl. Bot., 50: 1289–1297.
  84. Sari-Gorla, M., P. Krajewski, N. Di Fonzo, M. Villa and C. Frova. (1999). Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Applied Gene., 99: 289–295.
  85. Sattelmacher, B., F. Klotz, and H. Marschner. (1990). Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Plant Soil. 123: 131-137.
  86. Sharp, R. E. and Davies, W. J. (1979). Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta. 147: 43–49.
  87. Smit, A.L., J.F.C.M. Sprangers, P.W. Sablik, and J. Groenwold. (1994). Automated measurement of root length with a three-dimensional high-resolution scanner and image analysis. Plant Soil. 158: 145–149.
  88. Taramino, G., M. Sauer, J. Stauffer, D. Multani, X. Niu, H. Sakai, F. Hochholdinger. (2007). The RTCS gene in maize (Zea mays L.) encodes a lob domain protein that is required for postembryonic shoot-borne and embryonic seminal root initiation. Plant J., 50: 649-659.
  89. Tennant, D. (1975). A test of a modified line intersect method of estimating root length. J. Ecol., 63: 995–1101.
  90. Tennant, D. (1976). Root growth of wheat: I. Early patterns of multiplication and extension of wheat roots including effects of levels of nitrogen, phosphorus and potassium. Australian J. Agric. Res., 27: 183–196.
  91. Teyker R.H., R.H. Moll, W.A. Jackson. (1989). Divergent selection among maize seedlings for nitrate uptake. Crop Sci., 29: 879–884.
  92. Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky. (2002). Agricultural sustainability and intensive production practices. Nature. 418: 671-677.
  93. Tollenaar, M., A. Aguilera, and S.P. Nissanka. (1997). Grain yield is reduced more by weed interference in an old than in a new maize hybrid. Agron. J., 89: 239-246.
  94. Tollenaar, M. and Wu, J. (1999). Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci., 39: 1597-1604.
  95. Tuberosa, R., M.C. Sanguineti, P. Landi, S. Salvi, E. Casarani, S. Conti. (1998). RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought stressed maize (Zea mays L.). Theor. Appl. Gene., 97: 744-755.
  96. Uhart, S.A. and Andrade, F.H. (1995a). Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios. Crop Sci., 35: 183-190.
  97. Uhart, S.A. and Andrade, F.H. (1995b). Nitrogen deficiency in maize. Effects on crop growth, development, dry matter partitioning and kernel set. Crop Sci., 35: 1376-1383.
  98. Vamerali T., M. Saccomani, S. Bona, G. Mosca, M. Guarise and A. Ganis. (2003). A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil. 255: 157–167.
  99. Wang, Y., G. Mi, F. Chen, J. Zhang, and F. Zhang. (2004). Response of root morphology to nitrate supply and its contribution to nitrate accumulation in maize. J. Plant Nutri., 27: 2189-2202.
  100. Yu, J.M., J.B. Holland, M.D. McMullen and E.S. Buckler. (2008). Genetic design and statistical power of nested association mapping in maize. Genetics. 178: 539–551.

Editorial Board

View all (0)