Agro-biochemical Characterisation of Camelina sativa: A Review

DOI: 10.18805/ag.RF-230    | Article Id: RF-230 | Page : 278-287
Citation :- Agro-biochemical Characterisation of Camelina sativa: A Review.Agricultural Reviews.2022.(43):278-287
Ali Guendouz, Abderrahmane Hannachi, Mohamed Benidir, Zine El Abidine Fellahi, Benalia Frih guendouz.ali@gmail.com
Address : National Institute of Agronomic Research of Algeria (INRAA), Setif Unit, Algeria.
Submitted Date : 17-11-2021
Accepted Date : 22-03-2022


Camelina sativa- an oil seed flowering plant that originated in North Europe and Central Asia is known by many names: gold-of-pleasure, false flax, wild flax and German sesame. Belongs to the Family Cruciferae, genus Camelina and it includes several species. Camelina has several favorable agronomic characteristics, it can be cultivated both in winter and spring season, having a remarkable capacity to adapt and resist to difficult climate conditions and pests. Camelina sativa contains 30-48% oil and 33-47% protein and adequate micronutrients with unique properties for industrial and nutritional applications. In addition, Camelina is a promising oilseed crop for production of edible oil, seed meal for animal feed rations and/or biodiesel feedstock. The high amounts of unsaturated fatty acids (about 90%) make camelina oil fast-drying which can be used for making polymers, varnishes, paints, cosmetics and dermatological products. Camelina sativa seed meal consisting of up to 50% crude protein- can be sold asan ingredient for cattle and chicken feed, adding further value to producing camelina. Overall, Camelina oil, due to its composition, has multiple uses in various industries: feed technology, biodiesel production, biopolymer industry, cosmetic industry (skin-conditioning agent), in food products due to its high omega-3 fatty acid content and low erucic acid content and as milk fat substitution.


Animal feed Camelina sativa Feedstock Oilseed


  1. Abramovi, H. and Abram, V. (2005). Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technolologie and Biotechnologie. 43(1): 63-70.
  2. Abramovic, H., Butinar, B. and Nikolic, V. (2007). Changes occurring in phenoliccontent and oxidative stability of Camelina sativa oil during storage. Food Chemistry. 104: 903-909.
  3. Aziza, AE., Quezada, N. and Cherian, G. (2010). Feeding Camelina sativa meal to meat-type chickens: effect on production performance and tissue fatty acid composition. J Appl Poult Res. 19(2): 157-168. https://doi. org/10.3382/japr. 2009-00100.
  4. Belayneh, H., Wehling, R., Cahoon, E.and Ciftci, O.N. (2015). Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbondioxide. Journal of Supercritical Fluids.104: 153.
  5. Berdanier, C.D. (2002). Food Constituents. In: Handbook of Nutrition and Food. [Berdanier C.D. (Ed)]. CRC Press Boca Raton FL pp 3-95.
  6. Berhow, M.A., Polat, U., Glinski, J.A., Glensk, M., Vaughn, S.F., Isbell, T., Ayala-Diaz, I., Marek, L. and Gardner, C. (2013). Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Industrial Crops and Products. 43: 119- 125.
  7. Bertholdsson, N.O. (2007). Varietal variation in allelopathic activity in wheat and barley and possibilities for use in plant breeding. Allelopathy Journal. 19: 193-201.
  8. Berti, M., Gesch, R., Johnson, B., Ji, Y., Seames, W. and Aponte, A. (2015). Double and relay-cropping of energy crops in the northern Great Plains, USA. Industrial Crops Products. 75: 26-34. https://doi.org/10.1016/j.indcrop.2015.05.012
  9. Berti, M.,Gesch, R.,Eynck, C. anderson, J. and Cermak, S. (2016). Camelina uses, genetics, genomics,production and management, Industrial Crops and Products. 94: 690- 710.
  10. Betancor, M.B., Sprague, M., Usher, S., Sayanova, O., Campbell, P.J., Napier, J.A. and Tocher, D.R. (2015). A nutritionally- enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acidfor fish. Scitific Reports. 5: 8104.
  11. Blazevic, I., Burcul, F., Ruscic, M. and Mastelic, J. (2013). Glucosinolates, volatile constituents and acetylcholinesteraseinhibitory activity of Alyssoides utriculata. Chemistry of Natural Compounds. 49: 374-378.
  12. Bones, A.M. and Rossiter, J.R. (1996). The myrosinase glucosinolate system. An innate defense system in plant. Physiologiae Plantarum. 97: 194-208.
  13. Bullerwell, C.N., Collins, S.A., Lall, S.P. and Anderson, D.M. (2016). Growth performance, proximate andhistological analysis of rainbow trout fed diets containing Camelina sativa seeds, meal (high-oiland solvent-extracted) and oil. Aquaculture. 452: 342-350. 
  14. Burcul, F., Generali´c Mekini´c  I., Radan, M., Rollin, P. and  Blaževi´c, I. (2018). Isothiocyanates: Cholinesterase inhibiting, antioxidant and anti-inflammatory activity. Journal of Enzyme Inhibition and Medicinal Chemistry. 33: 577-582.
  15. Brock, J.R., Dönmez, A.A., Beilstein, M.A. and Olsen, K.M. (2018). Phylogenetics of Camelina Crantz. (Brassicaceae) and insights onthe origin of gold-of-pleasure (Camelina sativa). Molecular Phylogenetics and Evolution. 127: 834-842.
  16. Brock, J.R., Mandakova, T., Lysak, M.A. and Al-Shehbaz, I.A. (2019). Camelina neglecta (Brassicaceae, Camelineae), a new diploid species from Europe. PhytoKeys. 115: 51-57.  10.3897/ phytokeys.115.31704.
  17. Carlsson, A.S. (2009). Plant oils as feedstock alternatives to petroleum- a short survey of potential oil crop platforms. Biochimie . 91(6): 665-670.
  18. Chaudhary, R., Koh, C.S., Kagale, S., Tang, L., Wu, SW., Lv, Z., Mason, A.S., Sharpe, A.G., Diederichsen, A. and Parkin, I.A.P. (2020). Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa. G3 (Bethesda). 10(4):1297-1308. doi: 10.1534/ g3.119.400957. PMID: 32046969; PMCID: PMC7144077.
  19. Chen, C., Bekkerman, A., Afshar, R.K. and Neill, K. (2015). Intensification of dryland croppingsystems for bio-feedstock production: Evaluation of agronomic and economic benefits of Camelina sativa. Industrial Crops Products. 71: 114-121.
  20. Cherian, G., Campbell, A. and Parker, T. (2009). Egg quality and lipid composition of eggs from hens fed Camelina sativa. Journal of Applied Poultry Research. 18:143-150.
  21. Chaturvedi, S., Bhattacharya, A., Khare, S.K., Kaushik, G. (2019).  In: Camelina sativa: An Emerging Biofuel Crop. Handbook of Environmental Materials Management. [Hussain C. (eds.)], Springer, Cham. https://doi.org/10.1007/978- 3-319-73645-7_110
  22. Cieslak, A., Stanisz, M., Wojtowski, J., Pers-Kamczyc, E., Szczechowiak, J., El-Sherbiny, M. and Szumacher-Strabel, M.(2013). Camelina sativa affects the fattyacid contents in M. longissimus muscle of lambs. European Journal of Lipid Science and Technologie. 115: 1258-12126.
  23. Ciurescu, G., Ropota, M., Toncea, I. and Habeanu, M. (2016). Camelia [Camelina sativa (L.) Crantz] oil and seeds as n-3 fatty acids rich products in broiler diets and itseffects onperformance meat fatty acid composition immune tissue weights and plasma metabolic profile. Journal of Agriculture, Science and Technologie.18: 315-326.
  24. Crowley, J.G. and Frohlich, A. (1998) . Factors affecting the composition and use of Camelina. Oak Park, Carlow, Ireland: Teagasc publication1 901138 66 6.
  25. Czarnik, M., Jarecki, W. and Bobrecka-Jamro, D. (2018). Reaction of wintervarieties of false flax [Camelina sativa (L.) Crantz] to the varied sowing time. Journal of Central European Agriculture. 19(3): 571-586.
  26. Degenhardt, J., Köllner, T.G. and Gershenzon, J. (2009). Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 70: 1621-1637.
  27. Dobre, P., Jurcoane, Ş., Matei, F., Cristea S., Farcas, N. and Moraru,  A.C. (2014). Camelina sativa as a double crop using the minimal tillage system, Romanian Biotechnological Letters. 19(2): 9190-9195.
  28. Dobrzyñ ska, M. A. and Przys³ awski, J. (2021). The effect of camelina oil (a-linolenic acid) and canola oil (oleic acid) on lipid profile, blood pressure and anthropometric parameters in postmenopausal women. Archives of Medical Science. 17(6): 1566-1574. https://doi.org/10.5114/aoms.(2020).94033.
  29. Eidhin, D.N., Burke, J.and O’Beirne, D. (2003). Oxidative stability of omega3-rich camelina oil and camelina oil-based spread compared with plant and fish oils and sunflower spread. Journal of Food Science. 68: 345-353.
  30. Enjalbert, N. and Johnson, J. ( 2011). Guide for producing dryland camelina in eastern Colorado. Crop production fact sheet No. 0709. Colorado State University, Fort Collins, Colorado,USA.
  31. El Bassam, N. (2010). Handbook of bioenergy crops. A complete reference to species, development and applications. Earthscan LLC, Washington, DC, USA.
  32. Frame, D., Palmer, M. and Peterson, B. (2007). Use of Camelina sativa in the diets of young turkeys. Journal of Applied Poultry Research. 16: 381-386.
  33. Francis, A. and Warwick, S.I. ( 2009). The biology of Canadian weeds. 142. Camelina alyssum (Mill.) Thell.~ C. microcarpa Andrz. Ex DC.~ C. sativa (L.) Crantz. Canadian Journal of Plant Science. 89: 791-810.
  34. Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Kon’kova, N. and Francis, C. ( 2010). Camelina [Camelina sativa (L.) Crantz] as an alternative oilseed: Molecular and ecogeographic analyses. Genome. 53: 558-567.doi: https:/ /10.1139/G10-034 
  35. Goímez-Monedero, B., Bimbela, F., Arauzo, J.S., Faria, J., Ruiz, M.P. (2015). Pyrolysis of red eucalyptus, camelina straw and wheat straw in an ablative reactor. Energy Fuels. 29: 1766-1775.
  36. Halkier, B.A., Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annual Review of Plant Biology. 57: 303-333. 
  37. Haslam, R.P., Sayanova, O., Kim, H.J., Cahoon, E.B. and Napier, J.A. (2016). Synthetic redesign of plant lipid metabolism. The Plant Journal. 87: 76-86.
  38. Hess, B.W., Chen, C., Foulke, T., Jacobs, J., Johnson, D., Kintz, J., Krall, J. and Rife, C.(2011). Evaluation of Camelina Sativa as an Alternative Seed Crop and Feedstock for Biofuel and Developing Replacement Heifers. (Western Sutainable Agricultural Research and Education Program: Final Report. Project number SW07-049).
  39. Gehringer, A., Friedt, W., Luhs, W., Snowdon, R.J. and Lu, W. (2006). Geetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome. 49: 1555-1563.
  40. Hixson, S.M. and Parrish, C.C. (2014). Substitution of fish oil with camlina oil and inclusion of camelina meal in diets fed to Atlantic cod (Gadus morhua) and their effects on growth, tissu lipid classes and fatty acids. Journal of Animal Science. 92(3): 1055-67.
  41. Hixson, S.M., Parrish, C.C.and Anderson, D.M. (2014). Use of Camelina oil toreplace fish oil in diets for farmed salmonids and Atlantic cod. Aquaculture. 431: 44-52.
  42. Hrastar, R., Petrisic, M.G., Ogrinc, N. and Košir, I.J. (2009). Fatty acid and stable carbon isotope characterization of Camelina sativa oil: Implications for authentication. Journal of Agricultural and Food Chemistry. 57(2): 579-585. 
  43. Hurtaud, C.and Peyraud, J. (2007). Effects of feeding Camelina (seeds or meal) on milk fatty acid composition and butter spreadability. Journal of  Dairy Science. 90(11): 5134-5145.
  44. Hutcheon, C., Ditt, R.F., Beilstein, M., Comai, L., Schroeder, J., Goldstein, E., Shewmaker, C.K., Nguyen, T., De Rocher, J. and Kiser, J. (2010). Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biology. 10: 233.
  45. Hu,P.,Wang, A., Engledow, A., Hollister, E., Rothlisberger, K., Matocha, J., Zuberer, D., Provin, T., Hons, F.and Gentry, T. (2011). Inhibition of the germination and growth of Phymatotrichopsis omnivore (cotton root rot) by oilseed meals and isothiocyanates. Applied Soil Ecology. 49: 68-75.
  46. Jafariehyazdi, E.and Javidfar, F. (2011). Comparison of allelopathic effects of some brassica species in two growth stages on germination and growth of sunflower. Plant Soil and Environment. 57: 52-56.
  47. Jankowski, K.J., Sokólski, M.and Kordan, B. (2019). Camelina: yield and qualityresponse to nitrogen and sulfur fertilization in Poland. Industrial Crops and Products. 141:111776. https://doi.org/10.1016/j.indcrop.2019.111776.
  48. Katar, D. (2013). Determination of fatty acid composition on different false flax [Camelina sativa (L.) Crantz] genotypes under Ankara ecological conditions. Turk J Field Crops. 18(1): 66-72.
  49. Kim N., Li Y. and Sun, X.S. (2015). Epoxidation of Camelina sativa oil and peel adhesion properties, Industrial Crops and Products. 64: 1-8.
  50. Kong, C.H., Chen, X.H., Hu, F. and Zhang, S.Z. (2011). Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Management Science. 67: 1100-1106.
  51. Krzysztof, J., Jankowski, M.S.and Bo|ena, K. (2019). Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland, Industrial Crops and Products. 141: 1-10. 
  52. Leclère, M., Loyce, C.,and Jeuffroy, M.H. (2018). Growing camelina as a second crop in France: A participatory design approach to produce actionable knowledge. European Journal of Agronomy. 101: 78-89. https://doi.org/10.1016/j.eja. 2018.08.006
  53. Litvin, L. (2009). Production of Methyl Esters Using Salmon Oil, Pacific Biodiesel Technology. vol  1.
  54. Lord, J.S., Lazzeri, L., Atkinson, H.J. and Urwin, P.E. (2011). Biofumigation for control of pale potato cyst nematodes: Activity of brassica leaf extracts and green manures on globodera pallida in vitro and in soil. Journal of Agricultural and Food Chemistry. 59: 7882-7890.
  55. Lovett, J.V.and Duffield, A.M. (1981). Allelochemicals of Camelina sativa. Journal of Apllied Ecology. 18: 283-290. 
  56. Lu, C.and Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium mediated transformation. Plant Cell Reports. 27: 273-278.
  57. Matthäus, B.and Zubr, J. (2000). Variability of specific components in Camelina sativa oilseed cakes. Industrial Crops and Products. 12(1): 9-18.
  58. McVay, K.A. and Lamb, P.F. (2007). Camelina Production in Montana. Bull. MT200701AG. Montana State Univ(online) Available from http://msuextension.org/publications/Agand Natural Resources/MT200701AG.pdf. 
  59. Meakin, S. (2007). Edible Oilseeds andSpecialty Food crops. In: [S. Meakin, (editor),] Crops for Industry. A Practical Guide to Non-food and Oilseed Agriculture. The Crowood Press, Ramsbury, Marlborough. p. 141-153.
  60. Moser, B.R. (2010). Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope?. Lipid Technology. 22(12): 270-273.
  61. Mosio-Mosiewski, J., Auczkiewicz, T. Warza Ba, M., Nawraca Ba, J., Nosal, H. and Kurasiak-Popowska, D. (2015). Study on utilization of Camelina seed for production of biodiesel fuel. Chemical Industry. 94: 369-373.  
  62. Mulligan, G.A.(2002). Weedy introduced mustards (Brassicaceae) of Canada. Canandian Field Naturalist. 116: 623-631.
  63. Mupondwa, E., Li, X., Tabil, L., Falk, K. and Gugel, R.(2016). Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian Prairies. Biomass and Bioenergy. 95: 221-234.
  64. Nagao, K. and Yanagita, T. (2010). Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome, Pharmacological Research. 61: 208-212.
  65. Nosal, H., Nowicki, J., WarzaBa, M., Nowakowska-Bogdan, E. and Zarebska, M. (2015). Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol. Progress in Organic Coatings. 86: 59-70.
  66. Nain, S., Oryschak, M., Betti, M.and Beltranena, E. (2015). Camelina sativa cake for broilers effects of increasing dietary inclusion from 0 to 24% on tissue fatty acid proportions at 14, 28 and 42 d of age. Poultry Science . 94: 1247-1258.
  67. Obour, K. A., Sintim, Y. H.,Obeng, E.and Jeliazkov, D. V. (2015). Oilseed Camelina [Camelina sativa (L.) Crantz]: Production Systems, Prospects and Challenges in the USA Great Plains. Advances in Plants Agriculture Research. 2(2): 1-10.
  68. Ortega, R.M., Palencia A.and Lopez-Sobaler,A.M. (2006). Improvement of cholesterol levels and reduction of cardiovascular risk via the consumption of phytosterols. British Journal of Nutrition. 96(S1): 89-93. 
  69. Petre S.M.,Moraru. A., Dobre. P. and Jurcoane, S. (2015), Life Cycle Assessment of Camelina sativa- environmental friendly source for biofuels and livestock protein available in Romania, Romanian Biotechnological Letters. 20(4): 0561-10571.
  70. Popa, A.L., Jurcoane, S. and Dumitriu, B. (2017). Camelina sativa oil-A review. Scientific Bulletin Series F. Biotechnologies, XXI, ISSN 2285-1364, ISSN 2285-5521, ISSN online 2285-1372, ISSN-L 2285-1364.
  71. Putnam, D.H., Budin, J.T., Field, L.A. and Breene, W.M. (1993). A promising low input oilseed. New Crops, Wiley, New York, Eds. J. Fanick, J.E. Simon. 314-322.
  72. Quezel, P. and Santa, S. (1962). Nouvelle flore de l’Algérie et des régions désertiques méridionales, 2 tomes. Ed. C.N.R.S. Paris. 1170 p.
  73. Ryhänen, E.L., Perttilä, S., Tupasela, T., Valaja, J., Eriksson, C. and Larkka, K. (2007). Effect of Camelina sativa expeller cake on performance and meat quality of broilers. Journal of the Science Food and Agriculture. 87(8): 1489-1494.
  74. Righini, D., Zanetti, F.and Monti, A. (2016). The bio-based economy can serve as the springboard for Camelina and crambe to quit the limbo. OCL. 23(5): D504.
  75. Rode, J. (2002). Study of autochthon Camelina sativa (L.) Crantz in Slovenia. Journal of Herbs, Spices and Medicinal Plants. 9(4): 313-318.
  76. Rajan, T.S.,Giacoppo, S.,Iori, R., De Nicola, G.R.,Grassi, G.,Pollastro, F.,Bramanti, P. and Mazzon, E. (2016). Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia. 112: 104-115.
  77. Rask, L. andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. and Meijer, J. (2000). Myrosinase: Gene family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology. 42: 93-113.
  78. Salminen, H., Estévez, M., Kivikari, R. and Heinonen, M. (2006). Inhibition of protein and lipid oxidation by rapeseed, Camelina and soy meal in cooked pork meat patties. European Food Research and Technology. 223(4): 461-468.
  79. Sampath, A. (2009). Chemical Characterization of Camelina Seed Oil. In: Food Science, Vol. Masters of Science, Rutgers, The State University of New Jersey. The State University of New Jersey.
  80. Schwartz, H.,Velimatti, O.,Vieno, P.and Anna-Maija, L. (2008). Tocopherol, tocotrienol and plan sterol contents of vegetable oils and industrial fats. Journal of Food Composition and Analysis. 21: 152-161.
  81. Sizmaz, O., Gunturkun,B.and Zentek.J. (2016). A point on nutritive value of camelina meal for broilers: a review. International Journal of Veterinary Science. 5: 114-117.
  82. Spencer, G.F. and Daxenbichler, M.E. (1980). Gas chromatography-mass spectrometry of nitriles, isothiocyanates and oxazolidinethiones derived from cruciferous glucosinolates. Journal of the Science of Food and Agriculture. 31(4):359- 367.
  83. Sotelo, T.,Lema, M.,Soengas, P.,Cartea, M.E.and Velasco, P. (2015). In vitro activity of Glucosinolates and their degradation products against Brassica-pathogenic bacteria and fungi. Applied and Environemental Microbiology. 81: 432-440.
  84. Toncea, I., Necseriu, D., Prisecaru, T., Balint, L.N., Ghilvacs, I., Popa, M. (2013). The seed’s and oil composition of Camelia-first romanian cultivar of camelina [Camelina sativa (L.) Crantz]. Romanian Biotechnological Letters. 18: 8594-8602.
  85. Uremis, I., Arslan, M., Sangun, M.K., Uygur, V.and Isler, N. (2009). Allelopathic potential of rapeseed cultivars on germination and seedling growth of weeds. Asian Journal of Chemistry. 21: 2170-2184.
  86. Vaughn, SF. and Berhow, MA. (2005). Glucosinolate hydrolysis products from various plant sources: pH effects, isolation and purification, Ind Crop Prod. 21(2): 193-202.
  87. Vollmann, J., Grausgruber, H., Stift, G., Dryzhyruk, V. and Lelley, T. (2005). Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breeding. 124: 446-453.
  88. Vollmann, J., Moritz, T., Kargl, C., Baumgartner, S. and Wagentristl, H. (2007). Agronomic evaluation of camelina genotypes selected for seed quality characeristics. Industrial Crops and Products. 26: 270-277.
  89. Vollmann, J. and Eynck, C. (2015).Camelina as a sustainable oilseed crop:Contributions of plant breeding and genetic engineering. Biotechnology Journal. 10: 525-535.
  90. Woyengo, T.A, Patterson R.,Slominski, B.A., Beltranena, E. and Zijlstra, R.T. (2016). Nutritive value of cold-pressed camelina cake with or without supplementation of multi- enzyme in broiler chicken. Poultry Science. 95: 2314-2321.
  91. Zubr, J. (1997). Oil-seed crop: Camelina sativa. Industrial Crops and Products. 6: 113-119.
  92. Zubr, J. (2009). Camelina oil in human nutrition. Agro Food Industry HI-Tech. 20(4): 22-28.
  93. Zubr, J. (2010). Carbohydrates, vitamins and minerals of Camelina sativa seed.  Nutrition and Food Science. 40(5): 523- 531. https://doi.org/10.1108/00346651011077036.

Global Footprints