Loading...

Photo Selective Shade Net: An Effective Tool to Reduce the Impact of Global Warming and Pesticide Residues in Vegetable Production: A Review

DOI: 10.18805/ag.R-2363    | Article Id: R-2363 | Page : 135-144
Citation :- Photo Selective Shade Net: An Effective Tool to Reduce the Impact of Global Warming and Pesticide Residues in Vegetable Production: A Review.Agricultural Reviews.2022.(43):135-144
Dushyant D. Champaneri, Naren K. Patel dushyant6194@gmail.com
Address : Department of Vegetable Science, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari-396 450, Gujarat, India.
Submitted Date : 1-09-2021
Accepted Date : 27-10-2021

Abstract

Photo selective shade net is a product made of plastic fibers connected together with each other, forming a regular porous structure and allowing gases, liquid and light to pass through. It has a capacity to selectively filter the intercepted solar radiation, in addition to their protective function. Vegetables are considered as protective food which are highly perishable in nature. High temperature due to global warming, climate change and excessive use of chemicals are some of the burning issues of vegetable production. Photo selective shade net can be a partial solution for these problems. Vegetable crops grown under different photo selective shade net shows productive responses thus by application of various Photo selective shade nets we can improve the quality as well as production of vegetable crops.

Keywords

Climate change Global warming Pest management Properties of photo selective shade net Vegetable crop production

References

  1. Abdel - Ghany, A.M., Al - Helal, I.M. and Shady, M.R. (2014). On the emissivity and absorptivity of plastic shading nets under natural conditions. Adv. Mech. Eng. 1: 1-9.
  2. Adegoroye, A.S. and Jolliffe, P.A. (1987). Some inhibitory effects of radiation stress on tomato fruit ripening. J. Sci. Food Agric. 39: 297-302.
  3. Adil, H., Abdelmageeda, K., Grudab, N. and Geyerb, B. (2003). Effect on High Temperature and Heat Shock on Tomato. University of Khartoum, Department of Horticulture. Berlin: Institute for Horticulture Science.
  4. Al - Helal, I.M. and Abdel - Ghany, A.M. (2010). Responses of plastic shading nets to global and diffuse PAR transfer: Optical properties and evaluation. NJAS - NJAS - Wagen J. Life. Sci. 57: 125-132.
  5. Anonymous (2018). Horticultural Statistics at a Glance. Horticulture Statistics Division, Department of Agriculture, Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India, India. 1-13.
  6. Antignus, Y. and Ben-Yakir, D. (2004). Ultraviolet Absorbing Barriers, An Efficient Integrated Pest Management Tool to Protect Greenhouses from Insects and Virus Diseases. In: Insect Pest Management - Field and Protected Crops, [A.R. Horowitz and I. Ishaaya (Eds.)], Springer Publishers. 319- 335. 
  7. Ben-Yakir, D., Antignus, Y., Offir, Y. and Shahak, Y. (2012). Optical manipulation of insect pests for protecting agricultural crops. Acta Horticulturae. 956: 609-616.
  8. Caroline, L.J., Saidi, M. and Opiyo, A. (2017). Effect of coloured agro - net covers on insect pest control and yield of tomato (Solanum lycopersicon Mill). J. Agric. Sci. 9(12): 283-293.
  9. Cashmore, A.R., Jarillo, J.A., Wu, Y.J. and Liu, D. (1999). Cryptochromes: Blue light receptors for plants and animals. Science. 284: 760-765.
  10. Castellano, S., Mugnozza, G., Russo, G., Briassoulis, D., Mistriotis, A., Hemming, S. and Waaijenberg, D. (2008). Plastic nets in agriculture: A general review of types and applications. Applied Eng. Agric. 24(6): 799-808.
  11. Champaneri, D.D., Patel, N.K., Desai, C.S. and Desai, D.H. (2021). Efficacy of novel organic liquid nutrient and novel plus organic liquid nutrient on quantitative traits of Indian Bean [Lablab purpureus (L.) Sweet]. International Journal of Plant and Soil Science. 33(17): 105-115.
  12. Champaneri, D.D., Patel, N.K., Desai, C.S. and Tandel, B.M. (2020). Economics of Indian bean [Lablab purpureus (L.) Sweet] production influenced by application of novel organic liquid nutrient and novel plus organic liquid nutrient. Asian Journal of Agricultural Extension, Economics and Sociology. 38(9): 121-126.
  13. De Silva, C.S. and Gunawardena, M.D. (2016). Effects of global warming simulated temperature and water stress on fruit quality of tomato (Lycopersicum esculantum Var). Rajitha. OUSL J. 11: 93-112.
  14. Desai, C.D. (2015). Effect of different colour shade nets on biomass yield and quality of fenugreek, coriander and garlic. Doctoral Thesis, Navsari Agricultural University, Navsari, Gujarat, India.
  15. Diaz, B.M. and Fereres, A. (2007). Ultraviolet - blocking material as a physical barrier to control insect pests and plant pathogens in protected crops. Pest Tech. 1(2): 85-95.
  16. Dodd, M.B., MacGowan, W.A., Power, L.I. and Thorrold, B.S. (2005). Effects of variation in shade level, shade duration and light quality on perennial pastures. New Zeal. J. Agric. Res. 48: 531-543.
  17. Dorais, M., Papadopoulos, A.P. and Gosselin, A. (2001). Greenhouse tomato fruit quality. Hort. Rev. 26: 239-319.
  18. Elad, Y., Messika, Y., Brand, M., David, D.R. and Aztejnberg, A. (2007). Effect of colored shade nets on pepper powdery mildew (Leveillula taurica). Phytoparasitica. 35: 285-299.
  19. FAO. (2008). Climate-related Transboundary pests and diseases, technical background document from the expert consultation held on 25 to 27 February 2008, FAO, Rome. 
  20. Fletcher, J.M., Tatsiopoulou, A., Mpezamihigo, M., Carew, J.G., Henbest, R.G.C. and Battey, P. (2005). Far - red light filtering by plastic film, greenhouse - cladding materials: Effects on growth and flowering in petunia and impatiens. J. Hort. Sci. Biotech. 80: 303-306.
  21. Gogo, E.O., Saidi, M., Itulya, F.M., Martin, T. and Ngouajio, M. (2014). Eco - friendly nets and floating row covers reduce pest infestation and improve tomato (Solanum lycopersicon L.) yield for smallholder farmers in Kenya. Agronomy. 4: 1-12. 
  22. Grewal, A.S., Singla1, A., Kamboj, P. and Dua, J. (2017). Pesticide Residues in Food Grains, Vegetables and Fruits: A Hazard to Human Health. J. Med. Chem. Toxicol. 2(1): 1-7.
  23. Huché - Thélier, L., Crespel, L., Le Gourrierec, J.L., Morel, P., Sakr, S. and Leduc, N. (2016). Light signalling and plant responses to blue and UV radiations: Perspectives for applications in horticulture. Environ. Exp. Bot. 121: 22-38.
  24. Ilic, Z.S., Milenkovic, L., Stanojeviæ, L. and Cvetkovic, D. (2017). Light modification by color nets improves quality of lettuce from summer production. Scientia Horticulturae. 226: 389-397.
  25. Kalloo, G., Benarjee, M.K. and Tiwari, R.N. (2001). Tomato. In: Vegetables Tuber Crops and Spices. [Thumbraj, S. and Singh, N. (eds.)] Directorate of Information and Publication in Agriculture, Indian Council of Agricultural Research, New Delhi. 10-28.
  26. Kasperbauer, M.J. (1970). Spectral distribution of light in a tobacco canopy and effects of endofday light quality on growth and development. Plant Physiol. 47: 775-778.
  27. Koundinya, A.V., Sidhya, P. and Pandit, M.K. (2014). Impact of Climate Change on Vegetable Cultivation - A Review. Int. J. Agric. Environ. Biotech. 7(1): 145-155.
  28. Kumar, S.V. (2012). Climate change and its impact on agriculture: A review. Int. J. Agric. Environ. Biotech. 4(2): 297-302.
  29. Li, S., Rajapakse, N.C., Young, R.E. and Oi, R. (2000). Growth responses of chrysanthemum and bell peppers transplants to photo selective plastic films. Sci. Horti. 84: 215-225.
  30. Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J. and Cashmore, A.R. (1998). Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. 95: 2686-269.
  31. Lobos, A.G., Retamales, J.B., Hancock, J.F., Flore, J.A., Cobo, N. and del Pozo, A. (2012). Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’ grown under photo-selective nets. Environ. Exp. Bot. 75: 142-149.
  32. Lobos, G.A., Retamales, J.B., Hancock, J.F., Flore J.A., Romero - Bravo, S. and Del Pozo, A. (2013). Productivity and fruit quality of Vaccinium corymbosum cv. Elliott under photo -selective shading nets. Sci. Hort. 153: 143-149.
  33. Lorenzo, P., Sanchez-Guerrero, M.C., Medrano, E., Garcia, M.L., Caparros, I. Giminez and M. (2013). Effect on microclimate, water use efficiency and yield of a tomato crop grown under different salinity levels of the nutrient solution. Acta Horticulture. 609: 181-186.
  34. Marr, C. and Jirak, M. (1990). Holding Tomato transplants in plug trays. Hort. Sci. 25: 173-176.
  35. Meena, R. (2013). Microenvironment study under different colour shade nets and its effects on biophysical parameters in spinach (Spinacia oleracea L.). Master’s thesis, IARI, New Delhi.
  36. Milenković, L., Ilić, Z.S., Sunić, L., Trajković, R., Kapoulas, N. and Durovka, M. (2012). Reducing of tomato physiological disorders by Photo selective shade nets. Proceedings, 47th Croatian and 7th International Symposium on Agriculture, Opatija, Croatia. 419-423.
  37. Minaxi, R.P., Acharya, K.O. and Nawale, S. (2011). Impact of Climate Change on Food Security. Int. J. Agric. Environ. Biotech. 4(2): 125-127.
  38. Mishra, P., Sharma, A. and Sharma, D.A. (2014). Study on harmful effects of pesticide residue in vegetables. Int. J. Recent. Res. Rev. 7(1): 45-48.
  39. Mõttus, M., Baret, F., Lopez - Lozano, A.F.R. and Reinart, A. (2012). Photosynthetically Active Radiation: Measurement and Modelling. In: Encyclopaedia of Sustainability Science and Technology, [Meyers, R.A., Ed.], Springer Science. 7902-7932.
  40. Murica, G. (2016). ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non - structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiologia Plantarum. 156(3): 323-337.
  41. Nagy, Z., Daood, H., Neményi, A., Ambrózy, Z., Pék, Z. and Helyes, L. (2017). Impact of shading net color on phytochemical contents in two chili pepper hybrids cultivated under greenhouse conditions. Hort. Sci. Tech. 418-430.
  42. Ngelenzi, M.J., Otieno, O.J. and Mwanarusi, S. (2018). Improving water use efficiency and insect pest exclusion on French bean (Phaseolus vulgaris L.) using different coloured agro net covers. J. Agric. Sci. 11(3): 159-171.
  43. Ninu, L., Ahmad, M., Miarelli, C., Cashmore, A.R. and Giuliano, G. (1999). Cryptochrome 1 controls tomato development in response to blue light. Plant J. 18: 551-6.
  44. Nishimura, Y., Wada, E., Fukumoto, Y., Aruga, H. and Shimoi, Y. (2012). The effect of spectrum conversion covering film on cucumber in soilless culture. Acta Horticulturae. 956: 481-487.
  45. Ntsoane, L.M., Soundy, P., Jifon, J. and Sivakumar, D. (2016). Variety - specific responses of lettuce grown under the different - coloured shade nets on phytochemical quality after postharvest storage. J. Hort. Sci. Biotech. 91: 520-528.
  46. Ombódi, A., Pék, Z., Szuvandzsiev, P. and Kõházi - Kis, A. (2015). Effects of external coloured shade nets on sweet peppers cultivated in walk-in plastic tunnels. Not. Bot. Hort. Agrobo. 43(2): 398-403.
  47. Patil, M.A. and Bhagat, A.D. (2014). Yield response of cucumber (Cucumis sativus L.) to shading percentage of shade net. Int. J. Agric. Eng. 7(1): 243-248.
  48. Peet, M.M., Willits, D.H. and Gardner, R. (1997). Response of ovule development and post pollen production processes in male sterile tomatoes to chronic, sub - acute high temperature stress. J. Exp. Botany. 48(306): 101-111.
  49. Peet, M.M. and Willits, D.H. (1995). Role of excess water in tomato fruit cracking. Hort. Sci. 30: 65-68.
  50. Poornima, Gadge, S.B. and Gorantiwar, S.D. (2017). Yield response of drip irrigated cucumber to mulch and irrigation regimes under different shading net. Int. J. Curr. Microbiol. App. Sci. 6(8): 162-167.
  51. Rajapakse, N.M. and Shahak, Y. (2007). Light quality manipulation by horticulture industry. Ann. Rev. Plant Biol. 30: 290-312.
  52. Rosati, A. and Dejong, T.M. (2003). Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves. Ann. Bot. 91: 869-877.
  53. Sachs, J., Remans, R. and Smukler, S. (2010). Monitoring the world’s agriculture. Nature. 466: 558-560.
  54. Shahak, Y. (2008). Photo - selective netting for improved performance of horticultural crops. A review of ornamental and vegetable studies carried out in Israel. Acta Horticulturae. 770: 161- 168.
  55. Shahak, Y., Gussakovsky, E.E., Gal, E. and Ganelevin, R. (2004). Color Nets: Crop protection and light - quality manipulation in one technology. Acta Horticulturae. 659: 143-151. 
  56. Shahak, Yosepha. (2011). Photo selective netting: An overview of the concept, RandD and practical implementation in agriculture. Acta Horticulturae. 1015: 155-162.
  57. Son, K.H. and Oh, M.M. (2013). Leaf shape, growth and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light - emitting diodes. Hort. Sci. 48: 988-995.
  58. Tafoya, F.A., Juárez, M.G., Orona, C.A. and Valdés, T.D. (2018). Sunlight transmitted by colored shade nets on photosynthesis and yield of cucumber. Ciência Rural. 48(9): 1-9.
  59. Tilbrook, K., Arongaus, A.B., Binkert, M., Heijde, M., Yin, R. and Ulm, R. (2013). The UVR8 UV - B Photoreceptor: Perception, signalling and response. Arabidopsis Book. 1-21.
  60. Tinyane, P.P., Sivakumar, D. and Soundy, P. (2013). Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Sci. Hort. 16: 1340-1349.
  61. Verdaguer, M.A.K., Llorens, J.L., Morales, L.O. and Susanne, N. (2017). UV - A radiation effects on higher plants: Exploring the known unknown colors. Plant Sci. 255: 72-81.
  62. Victório, C.P., Leal - Costa, M.V., Tavares, E.S., Kuster, R.M. and Lage, C.L.S. (2011). Effects of supplemental UV - A on the development, anatomy and metabolite production of Phyllanthus tenellus cultured in vitro. Photochem. Photobiol. 87: 685-689.
  63. Wu, G. and Spalding, E.P. (2007). Separate functions for nuclear and cytoplasmic cryptochrome 1 during photo morphogenesis of Arabidopsis seedlings. Proc. Natl. Acad. Sci. 1048: 18813-18818.
  64. Zelanski, P. and Fisher, M.P. (2009). Color 6th ed. Prentice Hall, Avenel, NJ, Retamales.

Global Footprints