Loading...

Potential Impact of using Genetically Modified Crops in Ethiopia: A Review

DOI: 10.18805/ag.R-213    | Article Id: R-213 | Page : 419-427
Citation :- Potential Impact of using Genetically Modified Crops in Ethiopia: A Review.Agricultural Reviews.2022.(43):419-427
Ashebir Seyoum Feyisa ashebirseyoum20@gmail.com
Address : Department of Plant Science, College of Agriculture and Natural Resource, Bonga University P.O. Box 334, Bonga, Ethiopia.
Submitted Date : 26-06-2021
Accepted Date : 26-03-2022

Abstract

Agriculture in Ethiopia is reliant on the poor farmer’s income. Crop production in the country is hampered by a variety of factors, among them subsistence farming, inefficient use of farm inputs, climate change, poor export performance, policy uncertainty and low interest in agricultural credit are the major ones. Plant pests also pose a threat to food crops, resulting in significant losses for smallholder farmers and jeopardizing food security. Thus, Ethiopian policymakers recently recognized genetically engineered crops as a viable method of increasing food productivity and quality. A thorough empirical review had conducted, focusing on the status, potential benefits and drawbacks of genetically modified crop production in Ethiopia. Descriptive statistics had used, followed by raw data interpretation. Genetically modified crop production is an option for addressing food insecurity, malnutrition and the production of low-cost feedstock. However, as genetically modified crops become more prevalent in Ethiopian agriculture, humans, wildlife and the environment must all be considered. As a result, GM crops can help poor farmers improve their agricultural livelihoods if better national biosafety regulations had implemented.

Keywords

Biotechnology Food security Gene flow GM crops Seed sovereignty

References

  1. Abate, T., Shiferaw, B., Menkir, A., Wegary, D., Kebede, Y., Tesfaye, K., Kassie, M., Bogale, G., Tadesse, B. and Keno, T. (2015). Factors that transformed maize productivity in Ethiopia.  Food Security. 7(5): pp.965-981.
  2. Addis, T., Kachi, A. and Wang, J. (2021). A review of current state and future directions of cotton production in Ethiopia. Cogent Food and Agriculture. 7(1): p.1880533.
  3. AFSA- Alliance for Food Sovereignty in Africa. (2020). Seeds of neo-colonialism – Why the GMO promoters get it so wrong about Africa [online]. Available at: https://afsafrica.org/ seeds-of-neo-colonialism-why-the-gmo-promoters-get-it- so-wrong-about-africa/ [accessed: April 8, 2021].
  4. Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision.
  5. Avery, O.T., MacLeod, C.M. and McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. The Journal of Experimental Medicine. 79(2): 137-158.
  6. Baer-Nawrocka, A. and Sadowski, A. (2019). Food security and food self-sufficiency around the world: A typology of countries. PloS one. 14(3): e0213448.
  7. Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K. and Whittaker, J.B. (2002). Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global change biology. 8(1): 1-16.
  8. Bayrau, A., Bekele, F., Assefa, B. and Mihiretu, M. (2014). An Institutional Assessment of the Cotton and Sugarcane Commodities in Ethiopia: The Climate Change Perspective. Addis Ababa, Ethiopia.
  9. Berg, P., Baltimore, D., Brenner, S., Roblin, R.O. and Singer, M.F. (1975). Asilomar conference on recombinant DNA molecules. Science. 188(4192): 991-994.
  10. Birmeta, G. and Welander, M. (2004). Efficient micropropagation of Ensete ventricosum applying meristem wounding: A three-step protocol. Plant Cell Reports. 23(5): 277-283.
  11. Borrell, J.S., Biswas, M.K., Goodwin, M., Blomme, G., Schwarzacher, T., Heslop-Harrison, J.S. and Wilkin, P. (2019). Enset in Ethiopia: a poorly characterized but resilient starch staple. Annals of botany. 123(5): 747-766.
  12. Briefs, I.S.A.A.A. (2017). Global status of commercialized biotech/ GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA brief. 53: pp.25-26.
  13. Chand, H. and Kc, B. (2020). Quality seeds for food security and food self-sufficiency during havoc of covid-19 in Nepal. Tropical Agroecosystems (TAEC). 1(2): 80-87.
  14. Committee, I.C.A. (2016). International cotton advisory committee production and trade policies affecting the cotton industry october 2016.
  15. Daniell, H. (2002). Molecular strategies for gene containment in transgenic crops. Nature biotechnology. 20(6): 581-586.
  16. Devereux, S. and Sussex, I. (2000). Food insecurity in Ethiopia (p. 7). Institute for Development Studies.
  17. Diriba, G. (2018). Agricultural and rural transformation in Ethiopia. Ethiopian Journal of Economics. 27(2): 51-110.
  18. Dong, S., Liu, Y., Yu, C., Zhang, Z., Chen, M. and Wang, C. (2016). Investigating pollen and gene flow of WYMV-resistant transgenic wheat N12-1 using a dwarf male-sterile line as the pollen receptor. PLoS One. 11(3): p.e0151373.
  19. EFSA Guidance for those carrying out systematic reviews European Food Safety Authority. (2010). Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA Journal. 8(6): 1637.
  20. Ellstrand, N.C. (2003). Current knowledge of gene flow in plants: implications for transgene flow. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 358(1434): 1163-1170.
  21. Ertiro, B.T., Azmach, G., Keno, T., Chibsa, T., Abebe, B., Demissie, G. and Worku, M. (2019). Fast-tracking the development and dissemination of a drought-tolerant maize variety in Ethiopia in response to the risks of climate change. In The Climate-Smart Agriculture Papers (pp. 79-86). Springer, Cham.
  22. FAO, IFAD, UNICEF, WFP and WHO. (2019). The State of Food Security and Nutrition in the World 2019. Safeguarding against economic slowdowns and downturns [online]. Rome, FAO. [Cited 7 April 2021]. http://www.fao.org/state- of-food-security-nutrition.
  23. FAO, WFP and IFAD. (2012). The State of Food Insecurity in the World 2012. Economic Growth is Necessary But Not Sufficient to Accelerate Reduction of Hunger and Malnutrition. Rome, FAO.
  24. FAO. (1989). Resources phytogenetiques: Leur conservation in situ au service des humains, Rome: FAO.
  25. FAO. (2019). National Gender Profile of Agriculture and Rural Livelihoods- Ethiopia. Country Gender Assessment Series, Addis Ababa. 84 pp.
  26. Fehr, W. (1991). Principles of cultivar development: Theory and technique. Macmillian Publishing Company.
  27. Gezahegn, G. and Mekbib, F. (2016). In vitro regeneration of disease free enset [Ensete ventricosum (Welw) Cheesman] planting materials from bacterial wilt diseased plants using shoot tip culture. African Journal of Biotechnology. 15(40): 2192-2201.
  28. Gissa, D.W. (2016). Maize Varieties and Seed Value Chain Challenges in Ethiopia.
  29. Gudeta, B. and Egziabher, A.G. (2019). Cotton production potential areas, production trends, research status, gaps and future directions of cotton improvement in Ethiopia. Greener Journal of Agricultural Sciences. 9(2): 163-170.
  30. Haile, B., Adugna, G. and Handoro, F. (2014). Physiological and pathogenicity of Xanthomonas campestris pv. musacearum strains collected from enset and banana in southwest Ethiopia. Afr. J. Biotechnol. 13: 2425-2434
  31. Hunduma, T., Sadessa, K., Hilu, E. and Oli, M. (2015). Evaluation of enset clones resistance against enset bacterial wilt disease (Xanthomonas campestris pv. musacearum). Journal of Veterinary Science and Technology. 6(3): pp.1-7.
  32. IBC. (2012b). Ethiopia: Third country report on the state of plant genetic resource for food and agriculture to FAO, Addis Ababa, Ethiopia.
  33. ISAAA. (2017). Pocket K No.16: Biotech Crop Highlights in 2017. Manila: International Service for the Acquisition of Agri- biotech Applications (ISAAA).
  34. James, C. (2018). Brief 44: Global Status of Commercialized B iotech/GM Crops: 2012. ISAAA Brief. (44).
  35. James, C., Teng, P., Arujanan, M., Aldemita, R.R., Flavell, R.B., Brookes, G. and Qaim, M. (2015). Invitational essays to celebrate the 20th Anniversary of the commercialization of biotech crops (1996 to 2015): progress and promise. ISAAA Brief. (51).
  36. Judit, O., Péter, L., Péter, B., Mónika, H.R. and József, P. (2017). The role of biofuels in food commodity prices volatility and land use. Journal of competitiveness. 9(4): pp.81-93.
  37. Kempe, K., Rubtsova, M. and Gils, M. (2014). Split-gene system for hybrid wheat seed production. Proceedings of the National Academy of Sciences. 111(25): pp.9097-9102.
  38. Kolawole, P.O., Agbetoye, L. and Ogunlowo, S.A. (2010). Sustaining world food security with improved cassava processing technology: The Nigeria experience. Sustainability. 2(12): 3681-3694. https://doi.org/10.3390/su2123681.
  39. Lançon, J. and Woldu, B. (2020). The Ethiopian Cottonseed System- Description, Analysis and Recommendations.
  40. Malago Jr, W., Soares Costa, A. and Henrique Silva, F. (2009). DNA as genetic material: Revisiting classic experiments through a simple, practical class. Biochemistry and Molecular Biology Education. 37(5): pp. 290-295.
  41. Mallet, J. (2001). Gene flow. Insect movement: Mechanisms and consequences. pp. 337-360.
  42. McKnight, C. (2013). Integrated Management of Bacterial Wilt of Enset [Ensete ventricosum (Welw.) Cheesman] caused by Xanthomonas campestris pv. musacearum in Ethiopia.
  43. Minten, B. and Dorosh, P.A. (2019). Rising cereal prices in Ethiopia: An assessment and possible contributing factors (Vol. 73). Intl Food Policy Res Inst.
  44. Negash, A., Krens, F., Schaart, J. and Visser, B. (2001). In vitro conservation of enset under slow-growth conditions. Plant Cell, Tissue and Organ Culture. 66(2): 107-111.
  45. Olango, T.M., Tesfaye, B., Catellani, M. and Pè, M.E. (2014). Indigenous knowledge, use and on-farm management of enset [Ensete ventricosum (Welw.) Cheesman] diversity in Wolaita, Southern Ethiopia. Journal of Ethnobiology and ethnomedicine. 10(1): pp.1-18.
  46. Oliver, M.J. (2014). Why we need GMO crops in agriculture. Missouri Medicine. 111(6): p.492.
  47. Pender, J., Gebremedhin, B., Benin, S. and Ehui, S. (2001). Strategies for sustainable agricultural development in the Ethiopian highlands. American Journal of Agricultural Economics. 83(5): 1231-1240.
  48. Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy. 42(2): pp.129-150.
  49. Ray, D.K., Mueller, N.D., West, P.C. and Foley, J.A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one. 8(6): p.e66428.
  50. Sahle, M., Yeshitela, K. and Saito, O. (2018). Mapping the supply and demand of Enset crop to improve food security in Southern Ethiopia. Agronomy for Sustainable Development. 38(1): 1-9.
  51. Saurabh, S., Vidyarthi, A.S. and Prasad, D. (2014). RNA interference: concept to reality in crop improvement. Planta. 239(3): pp. 543-564.
  52. Schlett, A. and Beke, J. (2015). Food security and GMOs. Studia Mundi-Economica. 2(1): 95-103.
  53. Shiva, V. (2001). Protect or Plunder?: Understanding Intellectual Property Rights. Zed Books.
  54. Sida, T.S. (2021). Will Ethiopia be a springboard or a stonewall for GM crops in Africa?. Nature Biotechnology. 39(2): 147-148.
  55. Spielman, D.J. and Pandya-Lorch, R. (2009). Millions fed: Proven successes in agricultural development. Intl Food Policy Res Inst.
  56. Tenaye, A. (2020). Technical efficiency of smallholder agriculture in developing countries: The case of Ethiopia. Economies. 8(2): 34.
  57. The Cartagena Protocol on Biosafety to the Convention on Biological Diversity. Secretariat of the Convention on Biological Diversity (ISBN: 91-807- 1924-6) Montreal, 2000.
  58. Tripathi, J., Matheka, J., Merga, I., Gebre, E. and Tripathi, L. (2017). Efficient regeneration system for rapid multiplication of clean planting material of Ensete ventricosum (Welw.) Cheesman. In Vitro Cellular and Developmental Biology- Plant. 53(6): 624-630.
  59. UN (United Nations, Department of Economic and Social Affairs). Population Division. (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables working paper No.ESA/P/WP/248
  60. Urgessa, T. (2015). The determinants of agricultural productivity and rural household income in Ethiopia. Ethiopian Journal of Economics. 24(2): 63-91.
  61. Van Dijk, M., Morley, T., van Loon, M., Reidsma, P., Tesfaye, K. and van Ittersum, M. K. (2020). Reducing the maize yield gap in Ethiopia: Decomposition and policy simulation. Agricultural Systems. 183: 102828.
  62. Wang, P., Meyer, T.A., Pan, V., Dutta, P.K. and Ke, Y. (2017). The beauty and utility of DNA origami. Chem. 2(3): 359-382.
  63. Watson, J.D. and Crick, F.H. (2010). 1953. A Structure for Deoxyribose Nucleic Acid University of Chicago Press. (pp. 82-84).
  64. Welde-Michael, G., Bobosha, K., Addis, T., Blomme, G. and Mekonnen, S. (2008). Evaluation of enset landraces against bacterial wilt. Afr. Crop Sci. J. 16, 89-95.
  65. Yemataw, Z., Borrell, J.S., Biswas, M.K., White, O., Mengesha, W., Muzemil, S., Darbar, J., Ondo, I., Heslop-Harrison, P.S., Blomme, G., Wilkin, P. (2020). The Distribution of Enset Pests and Pathogens and a Genomic Survey of Enset Xanthomonas Wilt. bioRxiv. 2020 Jan 1.
  66. Yemataw, Z., Bekele, A., Blomme, G., Muzemil, S., Tesfaye, K. and Jacobsen, K. (2018). A review of enset (Ensete ventricosum (Welw.) Cheesman] diversity and its use in Ethiopia. Fruits. 73(6): 301-309.
  67. Yirga, C., Nin-Pratt, A., Zambrano, P., Wood-Sichra, U., Habte, E., Kato, E., Komen, J., Falck-Zepeda, J.B. and Chambers, J.A. (2020). GM maize in Ethiopia: An ex ante economic assessment of TELA, a drought tolerant and insect resistant maize. Intl Food Policy Res Inst. 1926. DOI: 10.2499/ p15738coll2.133714.
  68. Zeleke, M., Adem, M., Aynalem, M. and Mossie, H. (2019). Cotton production and marketing trend in Ethiopia: A review. Cogent Food and Agricxdulture. 5(1): 1691812.
  69. Zhang, Y.M., Zhang, Y. and Xie, K. (2020). Evaluation of CRISPR/ Cas12a-based DNA detection for fast pathogen diagnosis and GMO test in rice. Molecular Breeding. 40(1): 1-12.
  70. Zinabu, D., Gebre, E. and Asfere, Y. (2021). Genotype and plant growth hormone interaction effect on In vitro propagation of early maturing enset (Ensete ventricosum (Welw.) Cheesman) cultivars. Plant Cell Biotechnology and Molecular Biology. 89-102.

Global Footprints