Loading...

Conversion of Metabolomic Data to Genomic Marker for Genetic Characterization of Piper betle L. Chemotypes: A Review

DOI: 10.18805/ag.R-2118    | Article Id: R-2118 | Page : 162-169
Citation :- Conversion of Metabolomic Data to Genomic Marker for Genetic Characterization of Piper betle L. Chemotypes: A Review.Agricultural Reviews.2022.(43):162-169
Bidisha Mondal bidisha.mondal@tnu.in
Address : School of Agriculture and Allied Sciences, The Neotia University, Sarisha-743 368, West Bengal, India.
Submitted Date : 13-10-2020
Accepted Date : 5-02-2021

Abstract

The Indian perfumery industry is shifting towards natural product. In India including West Bengal betel leaves produces high quality essential oil as well contribute to Indian fresh vegetable export. The crop is cultivated from stem cutting and suffers from authenticity problem of cultivars with redundant names. The genetic screening and characterization of cultivars were not initiated due to unavailability of reliable markers. The essential oil metabolomic study identified some polar and non-polar volatile signature compounds. Metabolomic profiling of cultivars is not consistent due to seasonal variation in the production of secondary metabolites and ignorance in marking of unique trace discriminatory compounds. In this paper gene ontogeny study was made on major signature compounds to obtain the complete coding sequence (CDS) of the aroma-genes. The CDS information of aroma-genes could be utilized to construct robust DNA markers to eradicate authentication problem and germplasm management of Piper. The direct genomic analysis could supersede the metabolome profiling. Information available in NCBI, DDBJ and EMBL database were searched for gene ontogeny study utilizing available metabolomic data. The information and method depicted could be efficiently utilized for Piper genomics. Aroma-scientists could apply this technique to validate promising cultivars and competent germplasm management.  

Keywords

Aroma-gene ontogeny Chemotypes Discriminatory signature compound Essential oil Genome Metabolome Piper betle Transcriptome

References

  1. Basak, S. and Guha, P. (2015). Modelling the effect of essential oil of betel leaf (Piper betle L.) on germination, growth and apparent lag time of Penicillium expansum on semi-synthetic media. International Journal of Food Microbiology. 215: 171-178. 
  2. Bisognin, D.A. (2011). Breeding vegetatively propagated horticultural crops. Crop Breeding and Applied Biotechnology. S1: 35-43.
  3. Chen, C., Zheng., Y, Zhong., Y., et al. (2018). Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genomics. 19: 550. https://doi.org/10.1186/s12864-018-4941-1.
  4. Das, S., Parida., R, Sriram., I. S., Nayak., S, Mohanty, S. (2018). Biotechnological intervention in betelvine (Piper betle L.): A review on recent advances and future prospects. Asian Pacific Journal of Tropical Medicine. 9(10): 938-946. 
  5. Fokou, J.B.H., Dongmo, P.M.J. and Boyom, F.F. (2020). Essential oils chemical composition and pharmacological properties, in Essential Oil- Oils in Nature edited by Hany El-Shemy (Intechopen) January, doi: 10.5772/intechopen,77673.
  6. Gang, D.R., Lavid, N., Zubieta, C., et al. (2002). Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell. 14(2): 505-519. 
  7. Goyat, S., Grewal, A., Singh, D., Katiyar, R.S., Tewari, S.K., Nainwal, R.C., Hima Bindu, K. (2016). Evaluation of genetic diversity of Piper betle cultivars using ISSR markers. International Journal of Advanced Research. 4(1): 571-579.
  8. Guha, P. and Nandi, S. (2019). Essential oil of betel leaf (Piper betle L): A Novel Addition to the World Food Sector, in Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Application and Biotechnological Production edited by Sonia Malik (Springer Nature Switzerland), 149-196.
  9. Guha, P. (2007). Extraction of essential oil from betel leaf for manufacturing of food, medicinal and cosmetic products, in Proc. Indian Convention of Food Scientist and Technologist (ICAR, RKVY, Kerala) 44.
  10. He, X., Wang, S., Shi, J., Zhonglin, S., Zhentian, L., Zili, Y., Zigang, Q., Huiru, T. and Hui, X. (2018). Genotypic and Environmental Effects on the Volatile Chemotype of Valeriana jatamansi Jones. Frontiers in Plant Science. 9: 1-10. 
  11. Jaiswal, S.G., Patel, M., Saxena, D.K. and Naik, S.N. (2014). Antioxidant properties of Piper betel (L.) leaf extract from six different geographical domain of India. Journal of Bioresources Engineering and Technology. 2(2): 12-20.
  12. Jaiswal, S., Tomar, R.S., Vadukool, K., Chopra, U.M., Rathod, V.M., Parakhia, M.V., Iqbal, M.A., Rai, A. and Kumar, D. (2020) Transcriptome profiling of Indian sesame (Sissemum indicum L.) and discovery of genetic region markers. Bharatiya Krishi Anusandhan Patrika.
  13. Karak, S., Acharya, J., Begum, S., Mazumdar, I., Kundu, R. and De, B. (2018). Essential oil of Piper betle L. leaves: Chemical composition, anti-acetylcholinesterase, anti-â-glucuronidase and cytotoxic properties. Journal of Applied Research on Medicinal and Aromatic Plants. 10: 85-92. ISSN 2214-7861,https://doi.org/10.1016/j.jarma2018. 06.006.
  14. Karak, S., Bhattacharya, P., Nandy, A., Saha, A. and De, B. (2016). Metabolite profiling and chemometric study for varietal difference in Piper betle L. leaf. Current Metabolomics. 4(2): 1-12. 
  15. Kaur, G., Arya, S.K., Singh, B., Singh, S., Dhar, Y.V., Verma, P.C. and Ganjewala, J. (2019). Transcriptome analysis of the palmarosa Cymbopogon martinii inflorescence with emphasis on genes involved in essential oil biosynthesis. Industrial Crops and Products. 140: 111602. ISSN 0926-6690.
  16. Koeduka, T., Orlova, I., Baiga, T.J., Noel, J.P., Dudareva, N. and Pichersky, E. (2009). The lack of floral synthesis and emission of isoeugenol in Petunia axillaris subsp. parodii is due to a mutation in the isoeugenol synthase gene. Plant Journal. 60(5): 961 969. doi:10.1111/j.1365-313X. 2009.03834.x.
  17. Liu, J., Xu, C., Zhang, H., Liu, F., Ma, D. and Liu, Z. (2018). Comparative transcriptomics analysis for gene mining and identification of a cinnamyl alcohol dehydrogenase involved in methyleugenol biosynthesis from Asarum sieboldii Miq. Molecules. 23(12): 3184. doi:10.3390/molecules 23123184.
  18. Luo, J., Li, G. and Xu, P. (2015). AMBAB: A bioinformatics system for the assistance of molecular breeding asparagus bean (V. unguiculata ssp. sesquipedalis) and other plant species. Legume Research. 38(3): 321-323.
  19. Makkar, N., Prasanna, S.B. and Singla, H. (2017). Comparative evaluation of antifungal activity of Piper betel leaf oil, Origanum vulgare essential oil and fluconazole suspension on Candida albicans “ An In vitro Study. Journal of Indian Association of Public Health Dentistry. 15: 89-93.
  20. Mohottalage, S., Tabacchi, R., Guerin, P.M. (2007). Components from Sri Lankan Piper betle L. leaf oil and their analogues showing toxicity against the household fly, Musca domestica. Flavour and Fragrance Journal. 22: 130-138.
  21. Mondal, B., Saha, R. and Samanta, A. (2020). Improvement of local economy through the maintenance of the Rural House-Hold Bank (Piper Betel Baroj) of South Bengal. Indian Horticulture Journal. 10(1/2): 22-24.
  22. Muhammed, A., (2007). Isolation, structure elucidation and properties of secondary metabolites in plants, Ph.D Thesis, University of Calicut, Calicut.
  23. Patra, B., Das, M. T. and Das, S. K. (2016). A review on Piper betle L. Journal of Medicinal Plant Studies. 185(46): 185-192.
  24. Payghamzadeh, K., Toorchi, M. and Shobbar, Z.S. (2017). Proteome alteration of soyabean as a function of pod distortion syndrome. Legume Research.Doi.10.18805/Ir.voio.7836.
  25. Periyanayagam, K., Jagadeesan, M., Kavimani, S. and Vetriselvan, T. (2012). Pharmacognostical and Phyto-physicochemical profile of the leaves of Piper betle L. var Pachaikodi (Piperaceae) - Valuable assessment of its quality. Asian Pacific Journal of Tropical Biomedicine. 2(2): 506-510. https://doi.org/10.1016/S22211691(12)60262-7.
  26. Pietra, F. (2002). Chapter 13 - Exploiting natural product diversity, in Tetrahedron Organic Chemistry Series edited by Francesco Pietra (Elsevier), 131-201.
  27. Ranade, S., Verma, A. and Gupta, M. et al. (2002). RAPD Profile Analysis of Betel Vine Cultivars. Biologia Plantarum. 45: 523-527. doi.org/10.1023/A:1022364823330.
  28. Rani, B. and Sharma, V.K. (2017). Transcriptome Profiling: Methods and Applications- A review. Agricultural Reviews. 38: 271-281. doi.10.18805/ag.R-1549.
  29. Rao, B.R.R., Rajput, D.K. and Mallavarapu, G.R. (2016): Chemotype categorization of curry leaf plants [Murraya koenigii (L.) Spreng]. Journal of Essential Oil-Bearing Plants. 14(1): 1-10. doi: 10.1080/0972060X.201110643895.
  30. Rosato, A., Tenori, L., Cascante, M., et al. (2018). From correlation to causation: analysis of metabolomics data using systems biology approaches. Metabolomics. 14: 37. doi.org/10.1007/s11306-018-1335-y.
  31. Samantaray. S., Phurailatpam, A., Bishoyi, A.K., et al. (2012). Identification of sex-specific DNA markers in betel vine (Piper betle L.). Genetic Resource and Crop Evolution. 59: 645-653. doi.org/10.1007/s10722-011-9707-4.
  32. Satyal, P. and Setzer, William. (2012). Chemical composition and biological activities of Nepalese Piper betle L. International Journal of Professional Holistic Aromatherapy. 1(2): 23-26.
  33. Saxena, M., Khare, N.K., Saxena, P., Syamsundar, K.V. and Srivastava, S.K. (2014). Antimicrobial activity and chemical composition of leaf oil in two varieties of Piper betel from northern plains of India. Journal of Scientific and Industrial Research. 73: 95-99.
  34. Septimus, P.G.W. (2018). The Art of Perfumery, the method of obtaining the odour of plants. (Franklin Classics Trade Press) ISBN-10: 034387279X www.gutenberg.org/files/16378/16378-h/16378-h.htm.
  35. Sharma. B.K. (2014). Industrial Chemistry. (Goel Publishing, New Delhi) pp. 710.
  36. Thanh, L., Dung, N.X., Bighelli, A. and Casanova, J. (1996/1997). Combination of capillary GC, GC/MS and 13C NMR for the characterization of the rhizome oil of Piper betle L. Piperaceae of Vietnam. Spectroscopy. 131-136.
  37. Wirasuta, I., Srinadi, I., Dwidasmara, I., Ardiyanti, N., Trisnadewi, I. and Paramita, N. (2016). Authentication of Piper betle L. folium and quantification of their antifungal-activity. Journal of Traditional and Complementary Medicine. 7(3): 288-295.doi.org/10.1016/j.jtcme.2016.08.006.
  38. Yan, H., Baudino, S., Caissard, J.C. et al. (2018). Functional characterization of the eugenol synthase gene (RcEGS1) in rose. Plant Physiology and Biochemistry. 129: 21 26. doi:10.1016/j.plaphy.2018.05.015.
  39. Zouari, N. (2013). Essential oil chemotypes: a less known side. Med. Aromatic Plants. 2(1): 145. doi: 10-4172/2167-0412. 1000e145.

Global Footprints