Loading...

Application of Melatonin in Maintaining Post Harvest Quality of Fruits and Vegetables: A Review

DOI: 10.18805/ag.R-2092    | Article Id: R-2092 | Page : 193-198
Citation :- Application of Melatonin in Maintaining Post Harvest Quality of Fruits and Vegetables: A Review.Agricultural Reviews.2022.(43):193-198
P.S. Gurjar, Bharati Killadi, Pawan Kumar Pareek, T.S. Hada pawan09996@gmail.com
Address : ICAR-Central Institute for Arid Horticulture, Bikaner-334 001, Rajasthan, India.
Submitted Date : 8-09-2020
Accepted Date : 14-09-2021

Abstract

Melatonin (N-acetyl-5-methoxytryptamine) is a nontoxic biological molecule produced naturally in a pineal gland of animals and different tissues of plants. Melatonin acts as an antioxidant during postharvest storage and augments the shelf life of fruits and vegetables. Our review highlighted the role of pre and post harvest application of melatonin in extending post harvest shelf life and alleviating chilling injury in fruits and vegetables in cold storage. Review also included available information regarding biosynthesis of melatonin in plants and mode of action of melatonin in maintaining post harvest quality.

Keywords

Fruits Melatonin Post-harvest Quality Vegetables

References

  1. Aghdam, S.M. and Fard, J.R. (2017). Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry. 221: 1650-1657.
  2. Aguilera, Y., Herrera, T., Benítez, V., Arribas, S.M., Lopez De Pablo, A.L., Esteban, R.M. (2015). Estimation of scavenging capacity of melatonin and other antioxidants: contribution and evaluation in germinated seeds. Food Chemistry. 170: 203-211.
  3. Arah, I.K., Amaglo, H., Kumah, E.K., Ofori, H. (2015). Pre-harvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. International Journal of Agronomy. 9(1). 1-6. 
  4. Arnao, M. and Hernández-Ruiz, J. (2015). Functions of melatonin in plants: a review. Journal of Pineal Research. 59: 133- 150.
  5. Back, K., Tan, D.X. and Reiter, R.J. (2016). Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research. 61(4): 426-437.
  6. Badria, F.A. (2002). Melatonin, serotonin and tryptamine in some Egyptian food and medicinal plants. Journal of Medicinal Food. 5: 153-157.
  7. Banerjee, S. and Margulis, L. (1973). Mitotic arrest by melatonin. Experimental Cell Research. 78: 314-318.
  8. Cao, S., Shao, J., Shi, L., Xu, L., Shen, Z., Chen, W., Yang, Z. (2018). Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Science Reporter. 8: 806-810.
  9. Cao, S., Song, C., Shao, J., Bian, K., Chen, W. and Yang, Z. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defence response in harvested peach fruit during cold storage. Journal of Agriculture and Food Chemistry. 64: 5215-5222.
  10. Debnath, B., Hussain, M., Li, M., Lu, X., Sun, Y. and Qiu, D. (2018). Exogenous Melatonin Improves Fruit Quality Features, Health Promoting Antioxidant Compounds and Yield Traits in Tomato Fruits under Acid Rain Stress. Molecules. 23(8): 1868.
  11. Dubbels, R., Reiter, R. J., Klenke, E., Goebel, A., Schnakenberg, E. and Ehlers, C. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography mass spectrometry. Journal of Pineal Research. 18: 28-31.
  12. Gao, H., ZeMian Lu, Yue Yang, Dan Na Wang, Ting Yang, Mao Mao Cao and Wei Cao (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry. 245: 659-666. 
  13. Gao, H., Zhang, Z.K., Chai, H.K., Cheng, N., Yang, Y., Wang, D.N., Yang, T., Cao, W. (2016). MT treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology. 118: 103-110.
  14. Gonzalez-Gomez, D., Lozano, M., Fernandez-Leon, M.F., Ayuso, M.C., Bernalte, M.J. and Rodriguez, A.B. (2009). Detection and quantification of melatonin and serotonin in eight sweet cherry cultivars (Prunus avium L.). European Food Research and Technology. 229: 223-229.
  15. Hattori, A., Migitaka, H., Masayaki, I., Itoh, M., Yamamoto, K. and Ohtani-Kaneko, R. (1995). Identiûcation of melatonin in plant seed its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International. 35: 627-634.
  16. Hu, W., Tie, W., Ou, W., Yan, Y., Kong, H., Zuo, J., Ding, X., Ding, Z., Liu, Y., Wu, C. (2018). Crosstalk between calcium and melatonin affects postharvest physiological deterioration and quality loss in cassava. Postharvest Biology and Technology. 140: 42-49.
  17. Iriti, M., Rossoni, M. and Faoro, F. (2006). Melatonin content in grape: myth or panacea? Journal of Science Food and Agriculture. 86: 1432-1438.
  18. Jackson, W.T. (1969). Regulation of mitosis. II. Interaction of isopropyl N-phenylcarbamate  and melatonin. Journal of Cell Science. 5: 745-755.
  19. Jiang, Y., Liang, D., Liao, M. and Lin, L. (2016). Effects of melatonin on the growth of radish seedlings under salt stress. Advances in Engineering Research. 112: 382-386.
  20. Johns, N.P., Johns, J., Porasuphatana, S., Plaimee, P. and Sae- Teaw, M. (2013). Dietary intake of melatonin from tropical fruit altered urinary excretion of 6 sulfatoxymelatonin in healthy volunteers. Journal of Agriculture and Food Chemistry. 61: 913-919.
  21. Lee, H.Y., Byeon, Y., Back, K. (2014). Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. Journal of Pineal Research. 57: 262-268.
  22. Lerner, A.B., Case, J.D., Takahashi, Y., Lee, T.H., and Mori, W. (1958). Isolation of melatonin, a pineal factor that lightens melanocytes. Journal of the American Chemical Society. 80: 2587.
  23. Lili, X., Qianyu, Y., Feng, B., Heng, Z., and Yuxin, Y. (2018). Melatonin Treatment Enhances the Polyphenol Content and Antioxidant Capacity of Red Wine. Horticultural Plant Journal. 4(4): 144-150. 
  24. Liu C., Zheng, H., Sheng, K., Liua, W. and Zhenga, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology. 139: 47-55.
  25. Liu, J., Zhang, R., Sun, Y., Liu, Z., Jin, W. and Sun, Y. (2016). The beneficial effects of exogenous melatonin on tomato fruit properties. Scientia Horticulturae. 207: 14-20.
  26. Ma, Q., Zhang, T., Zhang, P. and Wang, Z.Y. (2016). Melatonin attenuates postharvest physiological deterioration of cassava storage roots. Journal of Pineal Research. 60(4): 424-434.
  27. Ma, Q., Zhang, T., Zhang, P., Wang, Z.Y. (2016). Melatonin attenuates postharvest physiological deterioration of cassava storage roots. Journal of Pineal Research. 60: 424-434. 
  28. Meng, J.F., Xu, T.F., Song, C.Z., Yu, Y., Hu, F., Zhang, L. and Xi, Z.M. (2015). Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chemistry. 185: 127-134.
  29. Nawaz, M.A., Yuan Huang, ZhilongBie, Waqar Ahmed, Russel J. Reiter, MengliangNiu and Saba Hameed (2016). Melatonin: Current Status and Future Perspectives in Plant Science. Frontiers in Plant Science. 6: 1-13.
  30. Nazari, Z., Nabiuni, M., Nejad, Z.S., Delfan, B. and Irian, S. (2015). Expression of aquaporins in the rat choroid plexus. Archives of Neuroscience. 2: e17312. 
  31. Oladi, E., Mohamadi, M., Shamspur, T. and Mostafavi, A. (2014). Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid–liquid extraction. Spectro Chim Acta. 132: 326-329.
  32. Qian, Y., Tan, D.-X., Reiter, R.J., Shi, H. (2015). Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Science Reporter. 5: 15815.
  33. Rastegar, S., Khankahdani, H.H. and Rahimzadeh, M. (2020). Effects of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage. Scientia Horticulturae. 259: 108835.
  34. Reiter, R.J. (1991). Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Reviews. 12: 151-180.
  35. Reiter, R.J. and Tan, D.X. (2002).Melatonin: An antioxidant in edible plants. Annals of Newyork Academy of Sciences. 957: 341-344.
  36. Reiter, R.J., Manchester, L.C. and Tan, D.X. (2005). Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition. 21: 920-924. 
  37. Reiter, R.J., Tan, D.X., Zhou, Z., Cruz, M.H.C., Fuentes-Broto, L. and Galano, A. (2015). Phytomelatonin: assisting plants to survive and thrive. Molecules. 20: 7396-7437. 
  38. Sharif, R., Mujtaba, M., Rahman, M., Shalmani, A., Ahmad, H., Anwar, T., Tianchan, D. and Wang, X. (2018). The Multifunctional Role of Chitosan in Horticultural Crops: A Review. Molecules. 23: 872.
  39. Shi, H., Jiang, C., Ye, T., Tan, D., Reiter, R.J., Zhang, H., Liu, R. and Chan, Z. (2014). Comparative physiological, metabolomic and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermuda grass Cynodon dactylon (L) by exogenous melatonin. Journal of Experimental Botany. 66: 681-694.
  40. Sun, W., Wang, Z., Cao, J., Cui, H. and Ma, Z. (2016). Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells. Cell Stress Chaperones. 21: 367- 372.
  41. Tan, D.X., Manchester, L.C., Liu, X., Rosales-Corral, S.A., Acuna- Castroviejo, D. and Reiter, R.J. (2013). Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. Journal of Pineal Research. 54: 127-138.
  42. Van-Tassel, D.L., Roberts, N.J., and O’Neill, S.D. (1995). Melatonin from higher plants: isolation and identification of N-acetyl- 5-methoxytryptamine. Plant Physiology. 108: 101. 
  43. Velenzuela, J.L., Manzano, S., Palma, F., Carvajal, F., Garrido, D., and Jamilena, M. (2017). Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions. International Journal of Molecular Sciences. 18: 1467. 
  44. Xin, D.D., Si, J.J., and Kou, L.P. (2017). Post-harvest exogenous melatonin enhances quality and delays the senescence of cucumber. Acta Horticulturae Sinica. 44: 891-901.  
  45. Xu, L., Yue, Q., Bian, F., Sun, H., Zhai, H. and Yao, Y. (2017). Melatonin enhances phenolics accumulation partially via ethylene signaling and resulted in high antioxidant capacity in grape berries. Frontiers in Plant Science. 8: 1426. 
  46. Zhai, R., Liu, J., Liu, F., Zhao, Y., Liu, L., Fang, C., Wang, H., Li, X., Wang, Z., Ma, F. and Xu, L. (2018). Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Postharvest Biology and Technology. 139: 38-46. 
  47. Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S. and Guo, Y.D. (2014).  Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany. 66: 647-656. 
  48. Zhang, S.M., Zheng, X.Z., Reiter, R.J., Feng, S., Wang, Y. and Liu, S. (2017). Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Frontiers in Plant Sciences. 8: 1993.
  49. Zhang, Y.Y., Huber, D.J., Hu, M.J., Jiang, G.X., Gao, Z.Y. and Xu, X.B. (2018). Melatonin delays postharvest browning in litchi fruit by enhancing antioxidative processes and oxidation repair. Journal Agriculture and Food Chemistry. 66: 7475-7484.
  50. Zhu, L., Hu, H., Luo, S., Wu, Z. and Li, P. (2018). Melatonin delaying senescence of postharvest broccoli by regulating respiratory metabolism and antioxidant activity. Transactions of the Chinese Society of Agricultural Engineering. 34: 300-307.

Global Footprints