High Pressure Processing of Fruits and Vegetables: A Review

DOI: 10.18805/ag.R-2020    | Article Id: R-2020 | Page : 347-355
Citation :- High Pressure Processing of Fruits and Vegetables: A Review.Agricultural Reviews.2020.(41):347-355
A.K. Archana, P.R. Geetha Lekshmi archanaak1994@gmail.com
Address : Department of Post-harvest Technology, College of Agriculture, Vellayani, Thiruvananthapuram-695 522, Kerala Agricultural University, Kerala, India.
Submitted Date : 18-05-2020
Accepted Date : 2-09-2020

Abstract

Fruits and vegetables are considered as protective foods and received importance in healthy diet plan. Postharvest loss in quality as well as quantity of fruits and vegetables is huge due to seasonal production, high perishability, shorter shelf life and preservation through processing is one of the best methods to minimise the loss. Thermal methods are more popular and these traditional methods of fruit and vegetable preservation often affect the quality of final products in terms of color, taste, flavor and nutritional qualities. Demand for fruit and vegetable products with ‘fresh like’ qualities are increasing and there is a shift of thermal methods of processing to non-thermal methods to improve the quality of processed products. Several non-thermal methods of processing are developed in order to meet the consumer demand of which high pressure processing has proven to be extremely valuable for fruit and vegetable products. It is an emerging technology in juice and beverage sector which allow fruit and vegetable juices as well as smoothies to store safely for a longer time with fresh taste while preserving its nutritional quality. 

Keywords

Enzyme inactivation Fruit products High pressure processing Sensory qualities

References

  1. Aabya, K., Grimsboa, I.H., Hovdab, M.B. and Rodeb, T.M. (2018). Effect of high pressure and thermal processing on shelf life and quality of strawberry puree and juice. Food Chemistry. 260: 115-123.
  2. Ahmed, J., Ramaswamy, H.S. and Hiremath, N. (2005). The effect of high pressure treatment on rheological characteristics and colour of mango pulp. International Journal of Food Science and Technology. 40: 885-895.
  3. Al-Ghamdi S., Sonar, C.R., Patel, J., Albahr, Z., Sablani, S.S. (2020). High pressure-assisted thermal sterilization of low-acid fruit and vegetable purees: Microbial safety, nutrient, quality and packaging evaluation. Food Control. 107233.
  4. Alvarez-Jubete, L., Valverde, J., Patras, A., Mullen, A.M. and Marcos, B. (2014). Assessing the impact of high-pressure processing on selected physical and biochemical attributes of white cabbage (Brassica oleracea L. var. capitata alba). Food Bioprocess Technol. 7(3): 682-692.
  5. Ancos, B., Rodrigo, M.J., Sánchez-Moreno, C., Cano, M.P. and Zacarías, L. (2020). Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges’ Navel’and the red-fleshed’Cara Cara’. Food Res. Int. 132: 109-105.
  6. Apichartsrangkoon, A., Chattong, U. and Chunthanom, P. (2012). Comparison of bioactive components in fresh, pressurized, pasteurized and sterilized pennywort (Centella asiatica L.) juices. High Pressure Res. 2: 1-7.
  7. Ayvaz, H., Schirmer, S., Parulekar, Y., Balasubramaniam, V.M., Somerville, J.A. and Daryaei, H. (2012). Influence of selected packaging materials on some quality aspects of pressure-assisted thermally processed carrots during storage. LWT- Food Sci. Technol. 46: 437-447.
  8. Balny, C. and Masson, P. (1993). Effects of High Pressure on Proteins. Food Reviews International. 9: 611-628.
  9. Banerjee, R. and Verma, A. (2015). Minimally Processed Meat and Fish Products, In Minimally Processed Foods, [M.W. Siddiqui and M.S. Rahman, (Eds)], New York: Springer International Publishing. pp. 193-250.
  10. Bansal, V., Siddiqui, M. and Rahman, M. (2015). Minimally Processed Foods: Overview. In: Minimally Processed Foods, M.W. Siddiqui and M.S. Rahman, (Eds), New York: Springer. pp. 1-15.
  11. Basak, S. and Ramaswamy, H.S. (1996). Ultra high-pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase. Food Research International. 29(7): 601-607.
  12. Basak, S. and Ramaswamy, H.S. (1998). Effect of high pressure processing on the texture of selected fruits and vegetables. Journal of Texture Studies. 29: 587-601.
  13. Bermúdez-Aguirre, D., Guerrero-Beltrán, J.Á., Barbosa-Cánovas, G.V. and Welti-Chanes, J. (2011). Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Food Sci. Technol. Int. 17(6): 541-547.
  14. Cano, M.P., Hernandez, A. and De Ancos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science. 62(1): 85-88.
  15. Castellari, M., Matricardi, L., Arfelli, G., Rovere, P. and Amati, A. (1997). Effects of high pressure processing on phenoloxidase activity of grape musts. Food Chemistry. 60(4): 647-649. 
  16. Chakraborty, S., Kaushik, N., Rao, P.S. and Mishra, H.N. (2014). High pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety. 13(4): 578-596.
  17. Chakraborty, S., Rao, P.S. and Mishra, H.N. (2019). Modeling the inactivation of pectin methylesterase in pineapple puree during combined high-pressure and temperature treatments. Innovative Food Science and Emerging Technologies. 52: Pp. 271-281.
  18. Chauhan, O.P., Ravi, N., Roopa, N., Kumar, S., Raju, P.S. (2017). High pressure, temperature and time-dependent effects on enzymatic and microbial properties of fresh sugarcane juice. J Food Sci Technol. 4(12):4135-4138.
  19. Cheftel, J.C. (1995). Review: high-pressure, microbial inactivation and food preservation. Food Science and Technology International. 1: 75-90.
  20. Chopde, S.S., Deshmukh, M.A., Kalyankar, S.D. and Changade, S.P. (2014). High pressure technology for cheese processing- a review. Asian J. Dairy Food Res. 33(4): 239-245.
  21. Creiler, S., Robert, M.C., Claude, J. and Juillerat, M.A. (2001 Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat- and pressure- induced inactivation. J. Agric. Food Chem. 49: 5566-5575.
  22. Denoya, G.I., Vaudagna, S.R. and Polenta, G., (2015). Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT-Food Science and Technology. 62(1): 801-806. 
  23. Dhineshkumar, V., Ramasamy, D. and Siddharth, M. (2016). High pressure processing technology in dairy processing: A review. Asian J. Dairy Food Res. 35(2): 87-95.
  24. Donsi, G., Ferrari, G., Matteo, M.D. and Bruno, M.C. (1998). High-pressure stabilization of lemon juice. Italian Food Beverage Technology. 14: 14-16.
  25. Duvetter, T., Fraeye, I., Van Hoang, T., Van Buggenhout, S., Verlent, I. and Smout, C. (2005). Effect of pectinmethylesterase infusion methods and processing techniques on strawberry firmness. Jounal of Food Science. 6: 383-388.
  26. Elamin, W.M., Endan, J.B., Yosuf, Y.A., Shamsudin, R. and Ahmedov, A. (2015). High Pressure Processing Technology and Equipment Evolution: A Review. Journal of Engineering Science and Technology Review. 8(5): 75-83.
  27. Fernandez, A., Butz, P., Bognar, A. and Tauscher, B. (2001). Antioxidative capacity, nutrient content and sensory quality of orange juice and an orange-lemon-carrot-juice product after high-pressure treatment and storage in different packaging. European Food Research and Technology. 213(4): 290–296.
  28. Fernandez, M.V., Denoya, G.I., Agüero, M.V., Jagus, R.J. and Vaudagna, S.R. (2018). Optimization of high pressure processing parameters to preserve quality attributes of a mixed fruit and vegetable smoothie. Inn. Food Sci. Emerging Technol. 47: 170-179.
  29. Fernández-Jalao, I., Sánchez-Moreno, C. and De Ancos, B. (2019). Effect of high-pressure processing on flavonoids, hydroxycinnamic acids, dihydrochalcones and antioxidant activity of apple ‘Golden Delicious’ from different geographical origin. Inn. Food Sci. Emerging Technol. 51: 20-31.
  30. Fernández, M.V., Denoya, G.I., Agüero, M.V., Vaudagna, S.R. and Jagus, R.J. (2020). Quality preservation and safety ensurement of a vegetable smoothie by high pressure processing. Journal of Food Processing and Preservation. 44(2): e14326.
  31. Garcia, A., Suthanthangjai, W., Kajda, P. and Zabetakis, I. (2004). The effects of high hydrostatic pressure on b-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria x ananassa). Food Chemistry. 88: 7-10.
  32. George, J.M., Selvan, T.S. and Rastogi, N.K. (2016). High-pressure-    assisted infusion of bioactive compounds in apple slices. Inn. Food Sci. Emerging Technol. 33: 100-107.
  33. Gomes, M.R.A. and Ledward, D.A. (1996). Effect of high pressure treatments on the activity of some polyphenol oxidases. Food Chemistry. 56: 1-5.
  34. Gopal, K.R., Kalla, A.M. and Srikanth, K. (2017). High Pressure Processing of Fruits and Vegetable Products: A Review. International Journal of Pure and Applied Bioscience. 5(5): 680-692.
  35. Gow, C.Y. and Hsin, T.L. (1996). Comparison of high-pressure treatment and thermal pasteurization effects on the quality and shelf life of guava puree. Int. J. Food Sci. Technol. 31(2): 205–213.
  36. Hayashi, R., Kawamura, Y., Nakasa, T. and Okinaka, O. (1989). Application of high pressure to food processing: Pressurization of egg white and yolk and properties of gel formed. Agricultural and Biological Chemistry. 53(11): 2935-2939.
  37. Heinz, V. and Buckow, R. (2010). Food preservation by high pressure. J. Consumer Protection Food Safety. 5(1): 73-81.
  38. Hendrickx, M., Ludikhuyze, L., Van den Broeck, I. and Weemaes, C. (1998). Effects of high pressure on enzymes related to food quality. Trends in Food Science and Technology. 9: 197-203. 
  39. Hu, X., Ma, T., Ao, L., Kang, H., Hu, X., Song, Y. and Liao, X. (2020). Effect of high hydrostatic pressure processing on textural properties and microstructural characterization of fresh cut pumpkin (Cucurbita pepo). J. Food Process Eng. 13379.
  40. Hurtado, A., Picouet, P. and Jofré, A. (2015). Application of High Pressure Processing for Obtaining “Fresh-Like” Fruit Smoothies. Food Bioprocess Technol. 8: 2470-2482.
  41. Hurtado, A., Guàrdia, M.D., Picouet, P., Jofré, A., Ros, J.M. and Bañón, S. (2017). Stabilization of red fruit based smoothies by high pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability. J. Sci.Food Agric. 97(3): 770-776.
  42. Jacobo-Velázquez, D.A. and Hernández-Brenes, C. (2010). Biochemical changes during the storage of high hydrostatic pressure processed avocado paste. J. Food Sci. 75(6): S264-70.
  43. Jayachandran, L.E., Chakraborty, S. and Rao, P.S. (2015). Effect of high pressure processing on physicochemical properties and bioactive compounds in litchi based mixed fruit beverage. Inn. Food. Sci. Emerg. Technol. 28: 1-9.
  44. Jennifer, K., Mc Inerney., Cathryn, A., Stewart, S.C.M. and Anthony R.B. (2007). Effects of high pressure processing on antioxidant activity and total carotenoid content and availability, in vegetables. Inn. Food Sci. Emerging Technol. 8: 543-548.
  45. Jolibert, F., Tonello, C., Sagegh, P. and Raymond, J. (1994). The effects of high pressures on fruit polyphenol oxidase. Bios Drinks. 25 (251): 27-37.
  46. Jung, L.S., Lee, S.H., Kim, S., Lee, S.K. and Ahn, J. (2012). Effect of high pressure processing on microbiological and physical qualities of carrot and spinach. Food Science and Biotechnology. 21(3): 899-904.
  47. Kaushik, N., Srinivasa Rao, P., Mishra, H.N. (2016). Process optimization for thermal-assisted high pressure processing of mango (Mangifera indica L.) pulp using response surface methodology. LWT - Food Sci. Technol. 69: 372-381.
  48. Keenan, D.F., Brunton, N.P., Gormley, T.R., Butler, F., Tiwari, B.K. and Patras, A. (2010). Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruit smoothies. Inn. Food Sci. Emerging Technol. 11: 551-556.
  49. Keenan, D.F., Rößle, C., Gormley, R., Butler, F. and Brunton, N.P. (2012). Effect of high hydrostatic pressure and thermal processing on the nutritional quality and enzyme activity of fruit smoothies. LWT- Food Sci. Technol. 45(1): 50-57.
  50. Knorr, D. (1995). Hydrostatic Pressure Treatment of Food: Microbiology, InNew Methods of Food Preservation. [G.W. Gould, (ed)], New York: Springer. pp. 159-175.
  51. Knudsen, J.C., Lund, B.M., Bauer, R., Quist, K.B. (2004). Interfacial and molecular properties of high pressure-treated â-lactoglobulin. Langmuir. 20: 2409–2415.
  52. Kouniaki, S., Kajda, P. and Zabetakis, I. (2004). The effect of high hydrostatic pressure on anthocyanins and ascorbic acid in blackcurrants (Ribes nigrum). Flavour and Fragrance Journal. 19: 281-286.
  53. Krebbers, B., Matser, A.M., Koets, M., Bartels, P. and Vanden Berg, R. (2002a). Quality and storage stability of high pressure preserved green beans. Journal of Food Engineering. 54: 27-33.
  54. Krebbers, B., Matser, A., Koets, M., Bartels, P. and Van den Berg, R. (2002b). High pressure temperature processing as an alternative for preserving basil. High Pressure Research. 22: 711-714.
  55. Lambert, Y., Demazeau, G., Largeteau, A. and Bouvier, J.M. (1999). Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chemistry. 67: 7-16.
  56. Li, R., Wang, Y., Ling, J. and Liao, X. 2017. Effects of high pressure processing on activity and structure of soluble acid invertase in mango pulp, crude extract, purified form and model systems. Food Chem. 231: 96-104.
  57. Loey, A.V., Ooms, V., Weemaes, C., Van den Broeck, I., Ludikhuyze, L. and Indrawati. (1998). Thermal and pressure temperature degradation of chlorophyll in broccoli (Brassica oleracea L. italica) juice: a kinetic study. Journal of Agricultural and Food Chemistry. 46(12): 5289- 5294.
  58. Lopes. and Paz. (2010). Conjugac¸ão de anticorpo anti-antígenocarcinoembrionário a nanopartículas magnéticas: avaliac¸ãodo potencial para detecc¸ão e tratamento de câncer., pp. 275-281.
  59. Matser, A.M., Krebbers, B., Van den Berg, R.W. and Bartels, P.V. (2004). Advantages of high pressure sterilization on quality of food products. Trends in Food Science and Technology. 15: 79-85.
  60. Ogawa, H., Fukuhisa, K., Kubo, Y. and Fukumoto, H. (1990). Pressure inactivation of yeasts, molds and pectin esterase in satsuma mandarin juice: effects of juice concentration, pH and organic acids and comparison with heat sanitation. Agricultural and Biological Chemistry. 54: 1219-1225.
  61. Paciulli, M., Medina-Meza, I.G., Chiavaro, E. and Barbosa-Cánovas, G.V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT-Food Sci. Technol. 68: 98-104.
  62. Parish, M.E. (1998). Orange juice quality after treatment by thermal pasteurizationor isostatic high pressure. LWT-Food Science and Technology. 31(5): 439-442.
  63. Patras, A., Brunton, N.P., Pieve, S.D. and Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. Innovative Food Science and Emerging Technologies. 10: 308-313.
  64. Polydera, A.C., Stoforos, N.G. and Taoukis, P.S. (2004). The effect of storage on the antioxidant activity of reconstituted orange juice, which had been pasteurized by high pressure or heat. International Journal of Food Science and Technology. 39(7): 783-791.
  65. Quaglia, G.B., Gravina, R., Paperi, R. and Paoletti, F. (1996). Effect of high pressure treatments on peroxidase activity, ascorbic acid content and texture in green peas. LWT-Food Science and Technology. 29: 552-555.
  66. Raghubeer, E.V., Phan, B.N., Onuoha, E., Diggins, S., Aguilar, V., Swanson, S. and Lee, A. (2020). The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. Int. J. Food Microbiol. 108697.
  67. Raso, J. and Barbosa Canovas, G. 2003. Non thermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition. 43: 265-285.
  68. Rastogi, N.K., Eshtiaghi, M.N. and Knorr, D. (1999). Effect of combined high pressure and heat treatment on the reduction of peroxidase and polyphenoloxidase activity in red grape. Food Biotechnology. 13(2): 195-208. 
  69. Reineke, K., Mathys, A., Heinz, V. and Knorr, D. (2013). Mechanisms of endospore inactivation under high pressure. Trends Microbiol. 21(6): 296-304.
  70. Rodrigo, D., Van Loey, A. and Hendrickx, M. (2007). Combined thermal and high pressure colour degradation of tomato puree and strawberry juice. Journal of Food Engineering. 79: 553-560.
  71. Saikaew, K., Lertrat, K., Meenune, M. and Tangwongchai, R. (2018). Effect of high-pressure processing on colour, phytochemical contents and antioxidant activities of purple waxy corn (Zea mays L. var. ceratina) kernels. Food Chem. 243: 328-337.
  72. Scheidt, T.B. and Silva, F.V. (2018). High pressure processing and storage of blueberries: effect on fruit hardness. High Pressure Res. 38(1): 80-89.
  73. Sila, D.N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C. and Van Loey, A. (2007). Texture changes of processed plant based foods: potential role of novel technologies. Trends in Food Science and Technology. 19(6): 309-319.
  74. Sila, D.N., Smout, C., Elliot, F., Van Loey, A. and Hendrickx, M. (2006). Non-enzymatic depolymerization of carrot pectin: toward a better understanding of carrot texture during thermal processing. Journal of Food Science. 71(1): 1-7.
  75. Sonaliben, L. Parekh, K.D., Aparnathi. and Sreeja, V. (2017). High Pressure Processing: A Potential Technology for Processing and Preservation of Dairy Foods. International Journal of Current Microbiology and Applied Sciences. 6(12): 3526-3535. 
  76. Sreedevi, P., Jayachandran, L.E. and Rao, P.S. (2019). Kinetic modeling of high pressure induced inactivation of polyphenol oxidase in sugarcane juice (Saccharum officinarum). Journal of the Science of Food and Agriculture. 99(5): 2365-2374.
  77. Stinco, C.M., Szczepañska, J., Marsza³ek, K., Pinto, C.A., Inácio, R.S., Mapelli-Brahm, P., Barba, F.J., Lorenzo, J.M., Saraiva, J.A. and Meléndez-Martínez, A.J. (2019). Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chem. 299: 125112.
  78. Strolham, J., Valentova, H., Houska, M., Novotna, P., Landfeld, A., Kyhos, K. and Gree, R. (2000). Changes in quality of natural orange juice pasteurized by high pressure during storage. Czech Journal of Food Sciences. 18(5): 187-193.
  79. Sun, Y., Kang, X., Chen, F., Liao, X. and Hu, X. (2019). Mechanisms of carrot texture alteration induced by pure effect of high pressure processing. Inn. Food Sci. Emerging Technol. 54: 260-269.
  80. Takahashi, Y., Ohta, H., Yonei, H. and Ifuku, Y. (1993). Microbicidal effect of hydrostatic pressure on satsuma mandarin juice. International Journal of Food Science and Technology. 28: 95-102.
  81. Tan, P.F., Ng, S.K., Tan, T.B., Chong, G.H. and Tan, C.P. (2019). Shelf life determination of durian (Durio zibethinus) paste and pulp upon high-pressure processing. Food Res. 3(3): 221-230.
  82. Tangwongchai, R., Ledward, D.A. and Ames, J.M. (2000). Effect of high-pressure treatment on the texture of cherry tomato. Journal of Agricultural and Food Chemistry. 48: 1434-1441.
  83. Tao, D., Li, F., Hu, X., Liao, X. and Zhang, Y. (2020). Quality comparison of “laba” garlic processed by high hydrostatic pressure and high pressure carbon dioxide. Scientific Reports. 10(1):1-9.
  84. Tiwari, B.K., Valdramidis, V.P., Donnell, C.P., Muthukumarappan, K., Bourke, P. and Cullen, P.J. (2009). Application of natural antimicrobials for food preservation: a review. Journal of Agricultural and Food Chemistry. 57: 5987-6000.
  85. Toledo, R.T., Singh, R.K. and Kong, F. (2018). Emerging food processing technologies. In: Fundamentals of Food Process Engineering, Springer, Cham. (pp. 403-422).
  86. Tsevdou, M., Gogou, E. and Taoukis, P. (2019). High hydrostatic pressure processing of foods. In: Green Food Processing Techniques, Academic Press, (pp. 87-137). 
  87. Tsikrika, K., O’Brien, N. and Rai, D.K. (2019). The effect of high pressure processing on polyphenol oxidase activity, phytochemicals and proximate composition of Irish potato cultivars. Foods. 8(10): 517.
  88. Ubeira-Iglesias, M., Wilches-Pérez, D., Cavia, M.M., Alonso-Torre, S. and Carrillo, C. (2019). High hydrostatic pressure processing of beetroot juice: effects on nutritional, sensory and microbiological quality. High Pressure Res. 39(4): 691-706.
  89. Vierira, F.N., Lourenco, S., Fidalgo, L.G., Sonia, A.O., Armando, J.D., Jeronimo, E. and Jorge, A. (2018). Long term effect on bioactive components and antioxidant activity of thermal and high-pressure pasteurization of orange juice. Molecules. 23(10): 2706.
  90. Winai, S., Paul, K. and Ioannis, Z. (2005). The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Food Chemistry. 90(2): 193-197.
  91. Yi, J., Kebede, B.T., Dang, D.N.H., Buv, C., Grauwe, T., VanLoey, A., Hu, X. and Hendrickx, M. (2017). Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT-Food Science and Technology. 75: 85-92. 
  92. You, Y., Li, N., Han, X., Guo, J., Zhao, Y., Liu, G., Huang, W. and Zhan, J. (2018). Influence of different sterilization treatments on the color and anthocyanin contents of mulberry juice during refrigerated storage. Inn. Food Sci. Emerging Technol. 48:1-10.
  93. Zhang C, Trierweiler B, Li W, Butz P, Xu Y, Rufer CE, Ma Y, Zhao X. (2011). Comparison of thermal, ultraviolet-c and high pressure treatments on quality parameters of watermelon juice. Food Chem. 126: 254-260.
  94. Zhang, Y., Liu, X.C., Wang, Y., Zhao, F., Sun, Z., Liao, X. (2016). Quality comparison of carrot juices processed by high-pressure processing and high-temperature short-time processing. Inn. Food Sci. Emerg. Technol. 33: 135-144.

Global Footprints