Effects of Nanoparticles on Seed Germination, Growth, Phytotoxicity and Crop Improvement

DOI: 10.18805/ag.R-1964    | Article Id: R-1964 | Page : 1-11
Citation :- Effects of Nanoparticles on Seed Germination, Growth, Phytotoxicity and Crop Improvement.Agricultural Reviews.2021.(42):1-11
Deepak Kumar Verma, Sapan Patel, Kalyan Singh Kushwah vermadeepakgene@gmail.com
Address : School of Studies in Botany, Jiwaji University, Gwalior- 474 011, Madhya Pradesh, India.
Submitted Date : 28-12-2019
Accepted Date : 6-10-2020


The interactions between nanoparticles (NPs) and plant cells are one of the most important aspects that are involved in the development of plant nanotechnology. The NPs released in plant cells inevitably interact with the basic organelles of plant cells. Because thousands of studies have addressed plant transformation, conversion, regeneration, accumulation and phytotoxicity of different types of NPs and even their transmission across the food chain, most of the important issues in the field of nanotechnology in plant interactions have remained for a long time. In this review, uptake and translocation pathways of NPs in plants, phytotoxicity, interactions, improvement and transformation are systematically reviewed. In particular, analytical nanotechnology and methodology and future approaches to related fields are proposed.


Growth Nanoparticles Phytotoxicity Seed


  1. Albanese, A., Tang, P.S. and Chan, W.C. (2012). The effect of nanoparticle size, shape and surface chemistry on biological systems. Annual Review of Biomedical Engineering. 14: 1-16.
  2. Adisa, I.O., Pullagurala, V.L.R., Peralta-Videa, J.R., Dimkpa, C.O., Elmer, W.H., Gardea-Torresdey, J.L. and White, J.C. (2019). Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science Nano. 6(7): 2002-2030.
  3. Almutairi, Z. M. and Alharbi, A. (2015). Effect of silver nanoparticles on seed germination of crop plants. J. Adv. Agric. 4(1): 283-288.
  4. Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P. and Wiesner, M.R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature nanotechnology. 4(10): 634.
  5. Andersen, C.P., King, G., Plocher, M., Storm, M., Pokhrel, L.R., Johnson, M.G. and Rygiewicz, P.T. (2016). Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environmental Toxicology and Chemistry. 35(9): 2223-2229.
  6. Avellan, A., Schwab, F., Masion, A., Chaurand, P., Borschneck, D., Vidal, V. et al. (2017). Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science and Technology. 51(15): 8682-8691.
  7. Adhikari, T., Sarkar, D., Mashayekhi, H. and Xing, B. (2016). Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. Journal of Plant Nutrition. 39(1): 99-115.
  8. Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P.K. and Zaidi, M.G.H. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation. 66(3): 303-310.
  9. Begum, M., Bordoloi, B.C., Singha, D.D. and Ojha, N.J. (2018). Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agricultural Reviews. 39(4): 321-326.
  10. Begum, P., Ikhtiari, R. and Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach and lettuce. Carbon. 49(12): 3907-3919.
  11. Bao-shan, L., Chun-hui, L., Li-jun, F., Shu-chun, Q. and Min, Y. (2004). Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Journal of Forestry Research. 15(2): 138-140.
  12. Boateng, S.K. and Tetteh, R. (2020). The effect of leguminous cover crops on growth and yield of garden eggs. Indian Journal of Agricultural Research. 54(2): 252-255.
  13. Choudhury, R., Majumder, M., Roy, D.N., Basumallick, S. and Misra, T.K. (2016). Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods. International Nano Letters. 6(3): 153-159.
  14. Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification?. Plant and Soil. 302(1-2): 1-17.
  15. Castro-González, C.G., Sánchez-Segura, L., Gómez-Merino, F. C. and Bello-Bello, J.J. (2019). Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: transport and accumulation. Scientific Reports. 9(1): 1-10.
  16. Deng, Y.Q., White, J.C. and Xing, B.S. (2014). Interactions between engineered nanomaterials and agricultural crops: implications for food safety. Journal of Zhejiang University Science A. 15(8): 552-572.
  17. Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., et al. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research. 14(9): 1125.
  18. Dionysiou, D.D. (2004). Environmental applications and implications of nanotechnology and nanomaterials. Journal of Environmental Engineering. 130(7): 723-724.
  19. Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J. and Khorasani, R. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae. 210: 57-64.
  20. Eichert, T., Kurtz, A., Steiner, U. and Goldbach, H.E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water suspended nanoparticles. Physiologia Plantarum. 134(1): 151-160.
  21. El Temsah, Y.S. and Joner, E.J. (2012). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology. 27(1): 42-49.
  22. Fathi, A., Zahedi, M., Torabian, S. and Khoshgoftar, A. (2017). Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. Journal of Plant Nutrition. 40(10): 1376-1385.
  23. Fulekar, M.H. (2010). Nanotechnology: importance and applications. IK International Pvt Ltd.
  24. Ghidan, A.Y. and Al Antary, T.M. (2019). Applications of Nanotechnology in Agriculture. In Applications of Nanobiotechnology. IntechOpen.
  25. Giraldo, J.P., Wu, H., Newkirk, G.M. and Kruss, S. (2019). Nano biotechnology approaches for engineering smart plant sensors. Nature Nanotechnology. 14(6): 541-553.
  26. Golami, A., Abbaspour, H., Hashemi-Moghaddam, H. and Gerami, M. (2018). Photocatalytic effect of TiO‚ nanoparticles on essential oil of Rosmarinus officinalis. Journal of Biochemical Technology. 9(4): 50.
  27. Hajra, A. and Mondal, N.K. (2017). Effects of ZnO and TiO2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L. Energy, Ecology and Environment. 2(4): 277-288.
  28. He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q. and Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research. 11(4): 1928-1937.
  29. Hernandez-Leon, S., Sarabia-Sainz, J., Montfort, G., Guzman-Partida, A., Robles-Burgueño, M. and Vazquez-Moreno, L. (2017). Novel synthesis of core-shell silica nanoparticles for the capture of low molecular weight proteins and peptides. Molecules. 22(10): 1712.
  30. Hezaveh, T.A., Pourakbar, L., Rahmani, F. and Alipour, H. (2019). Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Communications in Soil Science and Plant Analysis. 50(6): 698-715.
  31. Honour, S.L., Bell, J.N.B., Ashenden, T.W., Cape, J.N. and Power, S.A. (2009). Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics. Environmental Pollution. 157(4): 1279-1286.
  32. Hong, J., Peralta-Videa, J.R., Rico, C., Sahi, S., Viveros, M.N., Bartonjo, J., et al. (2014). Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environmental Science and Technology. 48(8): 4376-4385.
  33. Hong, J., Wang, L., Sun, Y., Zhao, L., Niu, G., Tan, W., et al. (2016). Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Science of the Total Environment. 563: 904-911.
  34. Hong, J., Rico, C.M., Zhao, L., Adeleye, A.S., Keller, A.A., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2015). Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environmental Science: Processes and Impacts. 17(1): 177-185.
  35. Hossain, Z., Mustafa, G., Sakata, K. and Komatsu, S. (2016). Insights into the proteomic response of soybean towards Al2O3, ZnO and Ag nanoparticles stress. Journal of Hazardous Materials. 304: 291-305.
  36. Hullmann, A. (2007). Measuring and assessing the development of nanotechnology. Scientometrics. 70(3): 739-758.
  37. Jat, S.K., Bhattacharya, J. and Sharma, M.K. (2020). Nanomaterial based gene delivery: a promising method for plant genome engineering. Journal of Materials Chemistry B. 8(19): 4165-4175.
  38. Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J. and Schroeder, A. (2018). Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Scientific Reports. 8(1): 1-10.
  39. Karunakaran, G., Suriyaprabha, R., Rajendran, V. and Kannan, N. (2016). Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnology. 10(4): 171-177.
  40. Kavipriya, C., Yuvaraja, A., Senthil, K. and Menaka, C. (2019). Genetic transformation methods for crop improvement: A brief review. Agricultural Reviews. 40(4): 281-288.
  41. Kavitha, M.P., Balakumbahan, R. and Prabukumar, G. (2019). Effect of foliar spray and fertilizer levels on growth and yield of vegetable cowpea [Vigna unguiculata (L.) Walp.]. Indian Journal of Agricultural Research. 53(6): 745-748.
  42. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.M., et al. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of the total environment. 431: 197-208.
  43. Larue, C., Khodja, H., Herlin-Boime, N., Brisset, F., Flank, A.M., Fayard, B. and Carrière, M. (2011). Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. In Journal of Physics: Conference Series (Vol. 304, No. 1, p. 012057). IOP Publishing.
  44. Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J. and Alvarez, P.J. (2010). Erratum: Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry. 29(6): 1399-1399.
  45. Lee, W.M., An, Y.J., Yoon, H. and Kweon, H.S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water insoluble nanoparticles. Environmental Toxicology and Chemistry: An International Journal. 27(9): 1915-1921.
  46. Lv, J., Zhang, S., Luo, L., Zhang, J., Yang, K. and Christie, P. (2015). Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environmental Science: Nano. 2(1): 68-77.
  47. Lv, J., Christie, P. and Zhang, S. (2019). Uptake, translocation and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science: Nano. 6(1):41-59.
  48. Ma, C., White, J.C., Dhankher, O.P. and Xing, B. (2015). Metal-based nanotoxicity and detoxification pathways in higher plants. Environmental Science and Technology. 49(12): 7109-7122.
  49. Maiti, S., El Fahime, E., Benaissa, M. and Kaur Brar, S. (2015). Nano-ecotoxicology of natural and engineered nanoparticles for plants. In Nanomaterials in the Environment. (pp. 469-485).
  50. Ma, H., Brennan, A. and Diamond, S.A. (2012). Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology and Chemistry. 31(9): 2099-2107.
  51. Martínez-Ballesta, M.C., Zapata, L., Chalbi, N. and Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of Nanobiotechnology. 14(1): 42.
  52. Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J. and Haynes, C.L. (2013). Toxicity of engineered nanoparticles in the environment. Analytical chemistry. 85(6): 3036-3049.
  53. Milewska-Hendel, A., Zubko, M., Karcz, J., Stróz, D. and Kurczyñska, E. (2017). Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Scientific Reports. 7(1): 3014.
  54. Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M. and Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and Environmental Safety. 88: 48-54.
  55. Morteza, E., Moaveni, P., Farahani, H.A. and Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus. 2(1): 247.
  56. Nagamani, C., Sumathi, V. and Reddy, G.P. (2020). Yield and nutrient uptake of pigeonpea [Cajanus cajan (L.)] as influenced by sowing window, nutrient dose and foliar sprays. Agricultural Science Digest-A Research Journal. 40(2): 149-153.
  57. Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., et al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology. 17(5): 372-386.
  58. Nel, A., Xia, T., Mädler, L. and Li, N. (2006). Toxic potential of materials at the nanolevel. Science. 311(5761): 622-627.
  59. Park, H.J., Kim, S.H., Kim, H.J. and Choi, S.H. (2006). A new composition of nanosized silica-silver for control of various plant diseases. The Plant Pathology Journal. 22(3): 295-302.
  60. Prasad, T.N., Adam, S., Rao, P.V., Reddy, B.R. and Krishna, T.G. (2016). Size dependent effects of antifungal phytogenic silver nanoparticles on germination, growth and biochemical parameters of rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). IET Nanobiotechnology. 11(3): 277-285.
  61. Perlatti, B., de Souza Bergo, P.L., Fernandes, J.B. and Forim, M. R. (2013). Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Insecticides-Development of Safer and More Effective Technologies. IntechOpen.
  62. Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Frontiers in Environmental Science. 5:12.
  63. Qian, H., Peng, X., Han, X., Ren, J., Sun, L. and Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences. 25(9):1947-1956.
  64. Rastogi, A., Tripathi, D.K., Yadav, S., Chauhan, D.K., Živèák, M., Ghorbanpour, M., et al. (2019). Application of silicon nanoparticles in agriculture. 3 Biotech. 9(3): 90.
  65. Razzaq, A., Ammara, R., Jhanzab, H. M., Mahmood, T., Hafeez, A. and Hussain, S. (2016). A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol. 2(1): 55-58.
  66. Reddy, P.S., Misra, P., Ramteke, P.W. and Shukla, P.K. (2018). Effect of graphene and titanium dioxide NPs on growth and yield characteristics of okra (Abelmoschus esculentus). Journal of Pharmacognosy and Phytochemistry. 7(4): 3151-3154.
  67. Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R. and Gardea-Torresdey, J.L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry. 59(8): 3485-3498.
  68. Rico, C.M., Lee, S.C., Rubenecia, R., Mukherjee, A., Hong, J., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2014). Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry. 62(40): 9669-9675.
  69. Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. and Adam, V. (2017). Nanoparticles based on essential metals and their phytotoxicity. Journal of Nanobiotechnology. 15(1): 33.
  70. Sabaghnia, N. and Janmohammadi, M. (2015). Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes/Wp³yw nanocz¹stek krzemionki na tolerancjê zasolenia we wczesnym rozwoju niektórych genotypów soczewicy. Annales UMCS, Biologia. 69(2): 39-55.
  71. Sabo-Attwood, T., Unrine, J.M., Stone, J.W., Murphy, C.J., Ghoshroy, S., Blom, D., et al. (2012). Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology. 6(4): 353-360.
  72. Sadak, M.S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects and yield of fenugreek plant (Trigonella foenum-graecum). Bulletin of the National Research Centre. 43(1): 1-6.
  73. Sanzari, I., Leone, A. and Ambrosone, A. (2019). Nanotechnology in plant science: to make a long story short. Frontiers in Bioengineering and Biotechnology. 7: 120.
  74. Saxena, M., Maity, S. and Sarkar, S. (2014). Carbon nanoparticles in ‘biochar’boost wheat (Triticum aestivum) plant growth. Rsc Advances. 4(75): 39948-39954.
  75. Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J.C., et al. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research. 17(2): 92.
  76. Shang, Y., Hasan, M., Ahammed, G.J., Li, M., Yin, H. and Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules. 24(14): 2558.
  77. Scrinis, G. and Lyons, K. (2007). The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. International Journal of Sociology of Food and Agriculture. 15(2): 22-44.
  78. Shaw, A. K. and Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere. 93(6): 906-915.
  79. Singla, R., Kumari, A. and Yadav, S.K. (2019). Impact of Nanomaterials on Plant Physiology and Functions. In Nanomaterials and Plant Potential. Springer, Cham. (pp. 349-377).
  80. Siddiqui, M.H. and Al-Whaibi, M.H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi journal of biological sciences. 21(1):13-17.
  81. Siddiqi, K. S. and Husen, A. (2016). Engineered gold nanoparticles and plant adaptation potential. Nanoscale Research Letters. 11(1): 400.
  82. Sillen, W.M., Thijs, S., Abbamondi, G.R., Janssen, J., Weyens, N., White, J.C. and Vangronsveld, J. (2015). Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biology and Biochemistry. 91: 14-22.
  83. Shang, L., Nienhaus, K. and Nienhaus, G.U. (2014). Engineered nanoparticles interacting with cells: size matters. Journal of Nanobiotechnology. 12(1): 5.
  84. Slomberg, D. L. and Schoenfisch, M. H. (2012). Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environmental Science and Technology. 46(18): 10247-10254.
  85. Srilatha, B. (2011). Nanotechnology in agriculture. Journal of Nanomedicine and Nanotechnology. 2(7).
  86. Strout, G., Russell, S.D., Pulsifer, D.P., Erten, S., Lakhtakia, A. and Lee, D.W. (2013). Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata. Annals of Botany. 112(6): 1141-1148.
  87. Song, U. and Lee, S. (2016). Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environmental Science and Pollution Research. 23(9): 8539-8545.
  88. Sosan, A., Svistunenko, D., Straltsova, D., Tsiurkina, K., Smolich, I., Lawson, T., et al. (2016). Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. The Plant Journal. 85(2): 245-257.
  89. Taylor, A.F., Rylott, E.L. anderson, C.W. and Bruce, N.C. (2014). Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLOS one. 9(4): e93793.
  90. Tiwari, M., Sharma, N.C., Fleischmann, P., Burbage, J., Venkatachalam, P. and Sahi, S.V. (2017). Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Frontiers in Plant Science. 8: 633.
  91. Thuesombat, P., Hannongbua, S., Akasit, S. and Chadchawan, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety. 104: 302-309.
  92. Tolaymat, T., El Badawy, A., Sequeira, R. and Genaidy, A. (2015). A system-of-systems approach as a broad and integrated paradigm for sustainable engineered nanomaterials. Science of the Total Environment. 511: 595-607.
  93. Tripathi, D.K., Singh, S., Singh, S., Pandey, R., Singh, V.P., Sharma, N.C., et al. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry. 110: 2-12.
  94. Vannini, C., Domingo, G., Onelli, E., De Mattia, F., Bruni, I., Marsoni, M. and Bracale, M. (2014). Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. Journal of Plant Physiology. 171(13): 1142-1148.
  95. Vecchio, G., Galeone, A., Brunetti, V., Maiorano, G., Rizzello, L., Sabella, S., et al. (2012). Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine: Nanotechnology, Biology and Medicine. 8(1): 1-7.
  96. Wang, X., Han, H., Liu, X., Gu, X., Chen, K. and Lu, D. (2012). Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research. 14(6): 841.
  97. Wang, J., Liu, Y., Li, Z., Wang, Y., Wang, J., Liu, T., et al. (2018). Fabrication of a high sensitive Ag-nanoparticle substrate and its application to the detection of toxic substances. In Journal of Physics: Conference Series IOP Publishing. Vol. 1065, No. 25, p. 252010.
  98. Wang, W.N., Tarafdar, J.C. and Biswas, P. (2013). Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. Journal of Nanoparticle Research. 15(1): 1417.
  99. Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J.C. and Xing, B. (2012). Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science and Technology. 46(8): 4434-4441.
  100. Xiao, L., Wang, S., Yang, D., Zou, Z. and Li, J. (2019). Physiological effects of MgO and ZnO nanoparticles on the Citrus maxima. Journal of Wuhan University of Technology-Mater. Sci. Ed. 34(1):243-253.
  101. Yanýk, F. and Vardar, F. (2015). Toxic effects of aluminum oxide (Al 2 O 3) nanoparticles on root growth and development in Triticum aestivum. Water, Air and Soil Pollution. 226(9): 296.
  102. Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C. and Wang, L. (2015). Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). International Journal of Environmental Research and Public Health. 12(12): 15100-15109.
  103. Zhang, P., Ma, Y., Liu, S., Wang, G., Zhang, J., He, X., et al. (2017). Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environmental pollution. 220: 1400-1408.
  104. Zhao, L., Ortiz, C., Adeleye, A.S., Hu, Q., Zhou, H., Huang, Y. and Keller, A.A. (2016). Metabolomics to detect response of lettuce (Lactuca sativa) to Cu (OH) 2 nanopesticides: oxidative stress response and detoxification mechanisms. Environmental Science and Technology. 50(17): 9697-9707.
  105. Zheng, L., Hong, F., Lu, S. and Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research. 104(1): 83-91.
  106. Zhu, H. and Njuguna, J. (2014). Nanolayered silicates/clay minerals: uses and effects on health. In Health and Environmental Safety of Nanomaterials. Woodhead Publishing. (pp. 133-146).
  107. Zhu, H., Han, J., Xiao, J. Q. and Jin, Y. (2008). Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring. 10(6): 713-717.

Global Footprints