Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 41 issue 1 (march 2020) : 1-13

Nutrient Management Technologies and the Role of Organic Matrix-Based Slow-Release Biofertilizers for Agricultural Sustainability: A Review

Indra Jeet Chaudhary, Ajay Neeraj, Mohd Arshad Siddiqui, Vivek Singh
1School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar-382 030, Gujarat, India. 
Cite article:- Chaudhary Jeet Indra, Neeraj Ajay, Siddiqui Arshad Mohd, Singh Vivek (2020). Nutrient Management Technologies and the Role of Organic Matrix-Based Slow-Release Biofertilizers for Agricultural Sustainability: A Review. Agricultural Reviews. 41(1): 1-13. doi: 10.18805/ag.R-1958.
Natural soil containing nutrients (like nitrogen, phosphorus, calcium and potassium) allows plants to grow. The deficiency of nutrients in soil reduced the growth and development of plants. When the nutrient level is too low, the plant cannot function properly and then fertilizers provide sufficient nutrients to plants. Nowadays the farmer applied various kinds of synthetic and organic and some special class of microbial fertilizers for more production of agricultural crops. Excess use of chemical fertilizers caused nutrient leaching problems and also pollutes soil, water and air environment. However, chemical fertilizers are expensive, non-eco-friendly, cause eutrophication, reduce organic matter and microbial activity in the soil and are hazardous to health. Therefore, Slow-release biofertilizers are also produced by the technical intermediations that breakdown the nutrients and make them available to the plants for a longer duration. These fertilizers play an important role in improving the growth and development of plants, thereby mitigating environmental pollution and helping in sustainable agriculture. The efficacy of slow-release biofertilizers can be enhanced plant growth and productivity and manage the nutrient leaching from soil and also control water pollution.
  1. Adesemoye, A.O., Torbert H.A. and Kloepper J.W. (2009). Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbiol Ecology. 58: 921–    929. 
  2. Allen, M.F. (2011). Linking water and nutrients through the vadosezone: a fungal interface between the soil and plant systems. Journal of Arid Land. 3:155–163
  3. Armada, E., Portela, G., Roldan, A. and Azcon, R. (2014).Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma. 232: 640–648
  4. Ashley M.K., Grant M. and Grabov A., (2006). Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 57: 425–436.
  5. Atýlgan, A., Coþkan A., Saltuk B., Erkan M. (2007). Antalya yöresindeki seralarda kimyasal ve organic gübre kullaným düzeyleri ve olasý çevre Etkileri’’, Ekoloji. 15(62): 37-47.
  6. Augé, R.M., Toler H.D. and Saxton A.M. (2015). Arbuscularmycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: ameta-analysis. Mycorrhiza. 25: 13–24
  7. Bacon, C.W., Palencia E.R. and Hinton D.M. (2015). Abiotic and biotic plant stress tolerant and beneficial secondary metabolites produced by endophytic bacillus species. In Plant Microbes Symbiosis: Applied Facets; Arora, N.K., Ed.; Springer India: Uttar Pradesh, India, pp. 163–177, ISBN 978-813222068-8.
  8. Bakhata, H.F., Bibia N., Ziaa Z., Abbasa S., Hammada H.M., Fahad S., Ashrafc M. R., Shaha G. M., Rabbania F. and Saeed S. (2018). Silicon mitigates biotic stresses in crop plants: A review. Crop Protection. 104: 21-34
  9. Balestrini, R., Lumini E., Borrielloand R. and Bianciotto V. (2015). Plant soil biota interactions, In Soil Microbiology, Ecology and Biochemistry, [ed E.A. Paul]: Academic Press Elsevier, London. 311–338.doi:10.1016/b978-0-12-415955-6.00011-6. 
  10. Bárzana, G., Aroca R., Paz J.A., Chaumont F., Ballesta M.C. and Carvajal M. (2012). Arbuscularmycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well watered and drought stress conditions. Ann. Bot. 109: 1009–1017.doi:10.1093/aob/    mcs007.
  11. Bárzana, G., Aroca, R. and Ruiz-Lozano, J. M. (2015). Localized and non-localized effects of arbuscularmycorrhizal symbiosis on accumulation of osmolytes and aqua por in sand on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environment. 38: 1613–1627.
  12. Bashan, Y., de-Bashan L.E., Prabhu S.R., Hernandez J.P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). (A Marschner Review). Plant Soil. 378: 1-33.
  13. Bhuvaneshwari, K., (2012). Environ. Conserv. J. 13: 1-5.
  14. Bhangu, R., and Virk, H. K. (2019). Nitrogen Management in Soybean: A Review. Agricultural Reviews. 40(2): 129-135.
  15. Bonanomi, G., De Filippis F., Cesarano G., La Storia A., Ercolini D. and Scala F. (2016). Organic farming induces changes in soil microbiota that affect agro-ecosystem functions. Soil Biology and Biochemistry. 103: 327–336.
  16. Boone, D.R. and Castenholz R.W. (2001).The Archaea and the deeply branching and phototrophic bacteria. In: Bergey’s manual of systematic bacteriology, 2nd Edn. [Garrity GM (ed)] Springer-Verlag, New York, 33-38. http://www. springer.com/life+sciences/microbiology/book/978-0-    387-98771-2.
  17. Börling, K. (2003). Phosphorus sorption, accumulation and leaching. Diss (sammanfattning/summary) Uppsala: Sveriges lantbruksuniv., Acta Universitatis Agriculturae Sueci e. Agraria. 428:1401-6249.
  18. CalvoPolanco, M., Molina S., Zamarreño A.M., García Mina J.M. and Aroca R. (2014).The symbiosis with the arbuscularmycorrhizal fungus Rhizophagusirregularis drives root water transport in flooded tomato plants. Plant Cell Physiology. 55: 1017–1029
  19. Chaudhary, I.J. and Singh R.P. (2018). Studies on growth, mobilization of nutrients and yield of wheat (Triticumae stivum L. PBW - 343) applied with organic matrix based slow release bio-fertilizers. International Journal of Current Microbiology and Applied Sciences. ISSN: 2319-7706 Special Issue-    7 pp. 3221-3238.
  20. Chen, J. (2006). The combined use of chemical and organic fertilizers and/orbiofertilizer for crop growth and soil fertility. International workshop on Sustained Management of the Soil–Rhizosphere System for Efficient Crop Production and Fertilizer Use, Thailand; 1–10.
  21. Choudhary, D.K., Sharma K.P., Gaur R.K. (2011).Biotechnological of microbes in agro-ecosystems. Biotechnology Letters. 33:1905–1910
  22. Choudhury, A.T.M.A. and Kennedy I.R. (2004). Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils. 39: 219–227
  23. Cong, P.T., Dung, T.D., Hien N.T., Choudhury A., Rose M.T., Kecskes M.L., Deaker R. and Kennedy I.R. (2011). Effects of a multistrain biofertilizer and phosphorus rates on nutrition and grain yield of paddy rice on a sandy soil in Southern Vietnam. Journal of Plant Nutrients. 34: 1058-1069
  24. Dahiya, S., Jaiwal P.K. and Singh R.P. (2004). Efficient nitrogen assimilation and high productivity in rice (Oryza sativa L.) applied with organic matrix based slow release nitrogen fertilizers. Physiol. Plant Molecular Biology. 10: 83-92.
  25. Datnoff L.E., Rodrigues F.A. and Seebold K. W. (2009). Silicon and Plant Disease. In: Mineral Nutrition and Plant Disease. [Datnoff L. E., W. H. Elmer and D. M. Huber (eds.)]. The American Phyto pathological Society Press, St. Paul, MN, pp. 233–246.
  26. Degrune, F., Dufrêne M., Colinet G., Massart S., Taminiau B., Bodson B., Hiel M.P., Daube G., Nezer C. and Vandenbol C.M. (2015). A novel sub-phylum method discriminates better the impact of crop management on soil microbial community. Agronomy for Sustainable Development. 35: 1157-1166
  27. Dey, R., Pal K.K., Bhatt D.M. and Chauhan S.M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogeal L.) by application of plant growth-promoting rhizobacteria. Microbiological Research. 159: 371-394
  28. Ding, L., Su J., Sun G.; Wu J., Wei W. (2018). Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil. Applied Microbiology and Biotechnology. 102: 1969–1982
  29. Draft U.S. Greenhouse Gas Inventory Report: 1990–2014. Available online: https://www3.epa.gov/climatechange/ghgemissions/usinventoryreport.html (accessed on 23 March 2016).
  30. Emilsson, T., Berndtsson J.C., Mattsson J.E. and Rolf K. (2007). Effect of using conventional and controlled release fertilizer on nutrient runoff from various vegetated roof systems. Ecological Engineering. 29: 260-271.
  31. Epstein, E. (2009). Silicon: its manifold roles in plants. Annals of Applied Biology. 155: 155–160.
  32. Elayaraja, D., Sathiyamurthi, S., and Kamalakannan, P. Study on the influence of organics and micronutrients fertilizer for increasing sesame production and sustainable soil fertility in coastal sandy soil.
  33. FAO, (2009). Resource STAT-Fertilizer.Food and Agriculture Organization of the United Nations. [Online]. Available:
  34. http://faostat.fao.org/site/575/Desktop Default.aspx? Page ID=575#ancor, 12.03.2009.
  35. FAO, (2005). Current world fertilizer trends and outlook to (2015) (ftp://ftp.fao.org/ag/agp/docs/cwfto15.pdf).
  36. Fernandez, A.L., Sheaffer C.C., Wyse D.L., Staley C., Gould T.J. and Sadowsky M.J. (2016). Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation. Applied Microbiology and Biotechnology. 100: 9331–9341
  37. Ferreira, J.S., Baldani J.I., Baldani V.L.D. (2010). Seleção de inoculantesàbasedeturfacontendobactériasdiazotrófica semduasvariedades de arroz. Acta Science Agronomy. 32(1): 179-185.
  38. Galloway, J., Raghuram N. and Abrol Y.P. (2008). A perspective on reactivenitrogen in a global, Asian and Indian context. Current Science. 94: 1375-1381.
  39. Glick, B.R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 15. doi: 10.6064/2012/963401.
  40. Gomez, E., Ferreras L. and Toresani S. (2006). Soil bacterial functional diversity as influenced by organic amendmentapplication. Bioresource Technology. 97: 1484-1489.
  41. Gomiero, T., Pimentel D. and Paoletti M.G. (2011). Environmental impact of different agricultural management practices: Conventional vs. Organic agriculture. Critical Review of Plant Science. 30: 95–124.
  42. Grant, C.A., Wu R., Selles F., Harker K.N., Clayton G.W., Bittman S., Zebarth B.J. and Lupwayi N.Z. (2012). Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding. Field Crops Research. 127: 170-180.
  43. Gu, Y., Wang Y., Lu S., Xiang Q., Yu X., Zhao K., Zou L., Chen Q., Tu S., Zhang X., (2017). Long-term fertilization structures bacterial and archaeal communities along soil depth gradient in a paddy soil. Frontiers in Microbiology. 8:1516.
  44. Hartmann, M., Frey B., Mayer J., Mäder P., Widmer F. (2015). Distinct soil microbial diversity under long-termorganic and conventional farming. ISME Journal. 9: 1177–1194.
  45. Heckman J. (2012). Silicon and Soil Fertility. The Soil Profile 20:1-12. Available online at https://njaes.rutgers.edu/pubs/soilprofile/sp-v20.pdf.
  46. Jarvie, H.P., Sharpley A.N., Spears B., Buda A.R., May L., Kleinman P.J.A. (2013). Water quality remediation faces unprecedented challenges from “Legacy Phosphorus. Environment Science and Technology. 47: 8997–8998.
  47. Jiménez-Bueno, N., Valenzuela-Encinas C., Marsch R., Ortiz-Gutiérrez D., Verhulst N., Govaerts B., Dendooven L. and Navarro-Noya Y. (2016). Bacterial indicator taxa in soils under different long-term agricultural management. Journal of Applied Microbiology. 120: 921–933.
  48. Jnawali, A.D., Ojha R.B. and Sushma M. (2015). Role of Azotobacter in soil fertility and sustainability–a review. Advances in Plants and Agriculture Research. 2(6): 250 253.
  49. Kennedy, I.R., Choudhury A.T.M.A. and Kecskés M.L. (2004). Non-symbiotic bacterial diazotrophs in crop farming systems: can their potential for plant growth promotion be better exploited. Soil Biology and Biochemistry. 36: 1229–1244.
  50. Khosro, M. and Yousef S. (2012). Bacterial bio-fertilizers for sustainable crop production: A review APRN. Journal of Agricultural and Biological Science. 7(5): 237-308.
  51. Korkmaz, K. (2007). TarýmGirdiSistemindeAzotveAzotKirliliði Available: http://www.ziraat.ktu.edu.tr/tarim_girdi.htm.
  52. Kumar, M., Bauddh K., Sainger M., Sainger P.A., Singh J.S. and Singh R.P. (2012). Increase in growth, productivity and nutritional status of rice (Oryza sativa L.cv. Basmati) and enrichment in soil fertility applied with an organic matrix entrapped urea. Journal of Crop Science and Biotechnology. 15(2): 137-144.
  53. Lenart, A. (2012).Occurance Characteristics and genetic diversity of azotobacterchroococcum in various soils of Southern Poland. Polish Journal of Environment Study. 21(2): 415–    424.
  54. Lupwayi, N.Z., Larney F.J., Blackshaw R.E., Kanashiro D.A., Pearson D.C., Petri R.M., (2017). Pyro sequencing reveals profiles of soil bacterial communities after 12 years of conservation management on irrigated crop rotations. Applied Soil Ecology. 121: 65–73.
  55. Malhotra, H., Vandana S., Sharma R. and Pandey S., (2018). Phosphorus nutrition: plant growth in response to deficiency and excess. [M. Hasanuzzaman et al. (eds.)], Plant Nutrients and Abiotic Stress Tolerance, https://doi.org/10.1007/978-981-10-9044-8_7.
  56. Martinez-Viveros, O., Jorquera, M., Crowley, D.E., Gajardo, G. and Mora, M.L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrients. 10: 293–319.
  57. Martyniuk, S. and Martyniuk M. (2003). Occurrence of Azotobacter spp. in some polish soils. Polish Journal of Environment Study. 12(3): 371–374.
  58. Mehnaz, S., Weselowski B. and Lazarovits G. (2007). Azospirillum
  59. canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. International Journal of Systematic and Evolutionary Microbiology. 57: 620-624.
  60. Mosier, A.R., Duxbury J.M., Freney J.R., Heinemeyer O. and Minami K. (1996). Nitrous oxide emissions fromagricultural fields: Assessment, measurement and mitigation. Plant and Soil.181: 95.doi:10.1007/BF00011296 (https://doi.org/10.1007%2FBF00011296).
  61. Nagananda, G.S., Das A. and Bhattachrya S. (2010). In vitro studies on the Effects of biofertilizers (Azotobacter and Rhizobium) on seed germination and development of Trigonella foenum graecum L. using a novel glass marble containing Liquid Medium. International Journal of Botany. 6(4): 394–    403.
  62. Nakkeeran, S., Fernando W.G.D. and Siddiqui Z.A. (2005). Plant growth promoting rhizobacteria formulations and itsscope in commercialization for the management of pests and diseases. In PGPR: Biocontrol and Bio fertilization; Siddiqui, Z.A., Ed.; Springer: Dordrecht, The Netherlands, 257–296.
  63. Nouri, E., Sessoms F.B., Feller U. and Reinhardt D. (2014). Phosphorus and nitrogen regulate arbuscularmycorrhizal symbiosis in petunia hybrida. PLoS ONE 9: e90841. doi:10.1371/journal.pone.0090841.
  64. Ontario Ministry of Agriculture, Food and Rural Affairs. Environmental Impacts of Nitrogen Use in Agriculture (http://www.omafra.gov.on.ca/english/engineer/facts/05-073.htm).
  65. Parashuramulu, S., Swain P.S. and Nagalakshmi D. (2013). J. Ani. Feed. Res. 3(3): 129-132.
  66. Peng, G., Wang H., Zhang G., Hou W., Liu Y., Wang E.T. and Tan Z. (2006). Azospirillummelinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. International Journal of Systematic and Evolutionary Microbiology. 56(6): 1263-    1271.
  67. Porcel, R., Arocaand R., Ruiz J.M. and Lozano (2011). Salinity stress alleviation using arbuscularmycorrhizal fungi. A review. Agronomy for Sustainable Development. 32:181–    200.
  68. Pozo, M.J. and Azcón-Aguilar C. (2007). Unraveling mycorrhiza induced resistance. Current Opinion in Plant Biology. 10: 393–398.
  69. Rawat, S.K., Singh R.K. and Singh R.P. (2010). Seasonal variation of nitrate level in ground and surface waters of lucknow and its remediation using certain aquatic macrophytes. International Journal of Lakes and Rivers. 3(1): 25-35.
  70. Rodrigues, V.M. (2008). Azospirillumamazoneseinoculantion: Effects on growth, yield and N2- fixation of rice (Oryza sativa L.). Plant Soil. 302: 249-361.
  71. RuizLozano, J.M., Porcel R., Azcón C. and Aroca R. (2012). Regulation by arbuscularmycorrhizae of the integrated physiological response to salinity in plants:newchallenges in physiological and molecular studies. Journal of Experimental Botany. 63: 4033–4044.
  72. Saharan, B.S., and Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research. Volume 2011: LSMR-21.
  73. Saia, S., Amato, G., Frenda, A.S., Giambalvo, D. and Ruisi P., (2014). Influence of arbuscularmycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress. PLoS ONE 9: e90738. doi:10.1371/journal.pone.0090738.
  74. Salhia, B. (2013). The Effect of Azotobacterchrococcumas Nitrogen biofertilizer on the growth and yield of Cucumissativus. Deanery of Higher Education Faculty of Science, Master of Biological Sciences, Botany: The Islamic University Gaza. 
  75. Sánchez Romera, B., RuizLozano, J.M., Zamarreño, Á.M., García Mina, J.M. and Aroca, R. (2015). Arbuscularmy corrhizal symbiosis and methyljasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza. doi:10.1007/s00572-015-0650-7.[Epuba head of print].
  76. Savci, S., (2012). An agricultural pollutant: Chemical fertilizer. International Journal of Environmental Science and Development. 3: 1.
  77. Schmieder, F., Bergström L., Riddle M., Gustafsson J.P., Klysubun W., Zehetner F., Condron L., Kirchmann H. (2018). Phosphorus speciation in a long-term manure amended soil profile – Evidence from wet chemical extraction, 31P-    NMR and P K-edge XANES spectroscopy. Geoderma. 322: 19–27.
  78. Schoumans, O., (2015). Phosphorus leaching from soils: process description, risk assessment and mitigation. Diss. Wageningen University and Research Centre.
  79. Schüßler, A., Schwarzott D. and Walker C., (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105: 1413–1421. doi: 10.1017/S0953756201005196.
  80. Sengupta, A. and Dick W.A. (2015). Bacterial Community Diversity in Soil Under two Tillage Practices as Determined by Pyro sequencing. Microbial Ecology. 70: 853–859.
  81. Setiawati, M.R., Damayani M., Herdiyantoro D., Suryatmana P., Anggraini D. and Khumairah F.H. (2018). Application dosage of azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant. AIP Conference Proceedings 1927, 030017.https://doi.org/10.1063/1.5021210. Published Online: 09 February 2018.
  82. Shah, K.N., Chaudhary I.J., Rana D.K. and Singh V. (2019). Growth, yield and quality of knol-khol (Brassica oleracea var. gongylodes) as affected by fertilizer management. Fundamental and Applied Agriculture. 4(3): 1–11.
  83. Shah, K.N., Chaudhary I.J., Rana D.K. and Singh V. (2019). Impact assessment of different organic manures on growth, morphology and yield of Onion (Allium cepa L.) cultivar. Asian Journal of Agricultural Research. ISSN 1819-1894. DOI: 10.3923/ajar.2019.
  84. Sharma, V.K. and Singh R.P. (2011). Organic matrix based slow release fertilizer enhances plant growth, nitrate assimilation and grain yield of Indian mustard (Brassica juncea L. cvPusa Bold). Journal of Environmental Biology. 32: 619-    624
  85. Shaukat, K., Affrasayab S., and Hasnain S., (2006). Growth responses of Triticum aestivum to plant growth promoting rhizobacteria used as a biofertilizers. Research Journal of Microbiology. 1(4): 330-338.
  86. Shaviv,A. (2000). Advances in controlled release fertilizers, advances in agronomy. Word Version, Before Printing. 71: 1-49.
  87. Shekoofa, A. and Emam Y., (2008). Effects of nitrogen fertilization and plant growth regulators (PGRs) on yield of wheat (Triticum aestivum L.) cv. Shiraz. Journal of Agricultural Science and Technology. 10: 101-108.
  88. Shenker, M., Seitelbach S., Brand S., Haim A. and Litaor M.I. (2004). Redox reactions and phosphorus release in reflooded soils of an altered wetland. European Journal of Soil Science. 56: 515–525.
  89. Singh, H., Ahluwalia A.S. and Khattar J.I.S. (2013). Induction of sporulation by different nitrogen sources in Anabaena naviculoides, a diazotrophicstrain capable of colonizing paddy field soil of Punjab (India). Vegetos. 26(1): 283-292.DOI:10.5958/j.22294473.26.1.041. http://www.indianjournals.comijor.aspx?taget=ijor:vetosandvolume =26andissue=1andarticle=041.
  90. Singh, H., Ahluwalia A.S. and Khattar J.I.S. (2013). Induction of sporulation by selected carbon sourcesin Anabaena naviculoides, a diazotrophic strain capable of colonizing paddy field soil of Punjab (India). Journal of Psychological Society. 43(2):18-25.
  91. Singh, R.P., Dahiya S. and Jaiwal P.K. (2006). Slow release fertilizers for sustained nitrogen supply and high plant productivity. In: Nitrogen Nutrition in Plant Productivity, [(Eds.): Rana P. Singh, Shankar, N. and Jaiwal, P. K.] Studium Press, LLC, Houston, Texas, USA, 329-349.
  92. Singh, S., Chaudhary I.J., Kumar, P. (2019). Utilization of low-cost agricultural waste for removal of toxic metals from environment: A review. International Journal of Scientific Research in Biological Sciences. 6(4): 56-61.
  93. Singh, A., Jaswal, A. and Singh, M. (2019). Enhancing nutrients use efficiency in crops by different approaches- A review. Agricultural Reviews. 40(1): 65-69. 
  94. Singh, S.K., Pathak R. and Pancholy A. (2017). Role of root nodule bacteria in improving soil fertility and growth attributes of leguminous plants under arid and semiarid environments. In: Rhizobium Biology and Biotechnology. [Hansen A., Choudhary D., Agrawal P., Varma A. (eds)] Soil Biology, vol 50. Springer, Cham, 978-3-319-64982-5. https://doi. org/10.1007/978-3-319-64982-5_4.
  95. Smith, F.A., JakobsenI.and Smith S.E. (2000). Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicagotruncatula. New Phytol. 147,357–366.doi:10.1046/j.1469-8137.2000.00695.x
  96. Smith, S.E. and Read D.J. (2008). Mycorrhizal Symbiosis, 3rd Edn. London: Academic. 
  97. Smith, S.E. and Smith F.A. (2012). Fresh perspectives on the roles of arbuscular my corrhizalfungi in plant nutrition and growth. Mycologia. 104: 1–13.
  98. Somers, E., Vanderleyden J. and Srinivasan M. (2004). Rhizosphere bacterial signaling: A love parade beneath our feet. Critical Reviews in Microbiology. 30(4): 205–240.
  99. Sönmez, I., Kaplan M. and Sönmez S. (2007). An investigation of seasonal changes in nitrate contents of soils and irrigation waters in green houses located in antalyademre region. Asian Journal of Chemistry. 19(7): 5639-5646.
  100. Sönmez, I., Kaplan M. Sönmez, S. (2008). ‘’Kimyasalgübrelerinçevrekirliliðiüzerineetkileriveçözümönerileri’’, Batý Akdeniz Tarýmsal Araþtýrma Enstitüsü Derim Dergisi, 25(2): 24-    34 ISSN 1300- 3496.
  101. Steenhoudt, O. and Vanderleyden J. (2000). Azospirillum, a free-    living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews. 24: 487-506.
  102. Swathi, V., (2010).The use and benefits of bio-fertilizer and biochar on agricultural soils unpublished B.Sc. thesis. Department of Chemical and Biological Engineering. Chalmers University of Technology Goteborg Sweden. 20-24.
  103. Tayyar, M., (2011). Web Sitesi, Su Hijyeni, Available: http://homepage. uludag.edu.tr/~mtayar/suhijyeni. htm, 10.10.2011.
  104. Thatoi, H., Behera B.C., Mishra R.R. and Dutta S.K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Annals of Microbiology. 63: 1-19.
  105. Topbaº, M.T., Brohi A.R., Karaman M.R. and ÇevreKirliliði T.C. (1998). Çevre Bakanlýðý Yayýnlarý, Ankara.
  106. Van Bruggen, A.H.C., Semenov A.M., Van Diepeningen A.D., De Vos O.J., Blok W.J. (2006). Relation between soil health, wave-like fluctuations in microbial populations and soil-    borne plant disease management. European Journal of Plant Pathology. 115: 105–122.
  107. Vessey J. K. (2003). Plant growth promoting Rhizobacteria as bio-fertilizers. Journal of Plant and Soil. 225(43): 571-86.
  108. Wagg, C., Bender S.F., Widmer F., van der Heijden M.G. (2014). Soil biodiversity and soil community composition determine ecosystem multi functionality. Proceedings of the National Academy of Sciences of the United States of America. 111: 5266–5270.
  109. Wang, M., Zheng Q., Shen Q. and Guo S., (2013). Critical role of potassium in plant stress response. International Journal of Molecular Science. 14: 7370–7390.
  110. Wang,W., Wang H., Feng Y.,Wang L., Xiao X., Xi Y., Luo X., Sun R., Ye X. and Huang Y. (2016). Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Science Reports. 6: 35046.
  111. Ward, M.H., Rena R., Jones I.D., Jean D., Brender T., de Kok M., Peter J. Weyer, Bernard T. Nolan, Cristina M., Villanueva I.D. and Simone G. van Breda (2018). Drinking water 
  112. nitrate and human health: An updated review. International Journal of Environment Resources and Public Health 15: 1557.
  113. WQ262 Nitrogen in the Environment: Leaching | University of Missouri Extension”(http://extension.missouri.edu/ p/    WQ262). Extension.missouri.edu. Retrieved 2013-03-08.
  114. Wu, L., Liu M. and Liang R. (2008). Preparation and Properties of a Double Coated Slow Release NPK Compound Fertilizer with Super Absorbent and Water Retention. Bioresour. Technology. 92: 547-554.
  115. Xiong, W., Li Z., Liu H., Xue C., Zhang R.,Wu H., Li R. and Shen Q. (2015). The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 Pyro sequencing. PLoS ONE. 10: e0136946.
  116. Xue, Y., Yue S., Zhang W., Liu D and Cui Z. (2014). Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize. PLoS ONE 9(4): e93895. doi:10.1371/journal.pone.0093895.
  117. Yadav, A., Singh S.L., Yadav B., Komath, S.S. (2014). Saccharomyces cerevisiae Gpi2, an accessory subunit of the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis, selectively complements some of the functions of its homolog in Candida albicans. Glycoconj J. 31(6-7), 497-507. 
  118. Ye, J., Perez P.G., Zhang R., Nielsen S., Huang D. and Thomas T. (2018). Effects of different C/N ratios on bacterial compositions and processes in an organically managed soil. Biological Fertile Soils. 54: 137-147.
  119. Zak, D. and Gelbrecht J. (2007). The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry. 85: 141-151.
  120. Zhao, G.Z., Liu Y.Q., Tian Y., Sun Y.Y. and Cao Y. (2010). Preparation and properties of macromolecular slow-release fertilizers containing nitrogen, phosphorus and potassium. Journal of Polymer Research. 17: 119-125.

Editorial Board

View all (0)